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1 Introduction

Recently, Bagger, Lambert [1–3] and Gustavsson [4] constructed a three-dimensional su-

percomformal field theory as a multiple-M2-brane world-volume theory in M-theory. This

BLG model is characteristic of the novel feature that the gauge symmetry is based on a Lie

3-algebra, and thus various studies on this algebra have been undertaken [5, 6]. For the BLG

model to work, the Lie 3-algebra needs to satisfy the fundamental identity (a generalization

of Jabobi identity). If the positivity of the invariant metric is also imposed to avoid ghosts,

the only non-trivial example of finite dimensional 3-algebra is A4 [7] and its direct sums.

If we relax the condition on dimensionality, Nambu-Poisson brackets give realizations

of infinite dimensional Lie 3-algebra [8, 9]. The BLG model with this algebra realizes

the world-volume theory of M5-branes in the C-field background on a 3-manifold where

Nambu-Poisson bracket can be defined.

Similarly, when the requirement of a positive definite metric is given up, we also

found physically meaningful models. Among the various examples, a Lie 3-algebra with a
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negative-norm generator was constructed and was referred to as Lorentzian Lie 3-algebra.1

The corresponding BLG model has ghosts, but they can be completely decoupled. It was

realized that the inclusion of the Lorentzian generators is associated with the compactifica-

tion of a spatial dimension, and this Lorentzian model reproduces the multiple- D2-brane

world-volume theory in type IIA string theory.

In this paper, we study some generalizations of such Lorentzian 3-algebras for which

ghost fields can still be decoupled. Such algebras have been considered extensively by de

Medeiros et. al [11] when the number of Lorentzian pairs is two. Here we present more

straightforward and explicit analysis in terms of the structure constants. We find it fruitful

to consider generalizations with more Lorentzian pairs, as it gives us insight about how

to circumvent the strict constraints from fundamental identities. We also study the BLG

model associated with such 3-algebras. Our construction includes an interesting example

which contains the massive Kaluza-Klein towers associated with additional compactified

dimensions. This seems to be consistent with our expectation that adding Lorentzian pairs

corresponds to additional compactifications. A typical feature of the generalized Lorentzian

3-algebra is indeed that we have a massive spectrum with N = 8 SUSY in the BLG model,

and we need an infinite dimensional realization to have nontrivial interacting models.

Our observation of the relation between the D-brane system with Lorentzian gauge

symmetry and higher dimensional branes is not restricted to the context of BLG models.

In fact, most of the examples considered here can be directly analyzed in the context

of a Yang-Mills system whose gauge symmetry has Lorentzian signiture. It was known

that in some brane configurations (see for example [12]) we have to treat such an infinite

dimensional gauge symmetry on D-branes. It was generally expected that the appearance

of infinite dimensional symmetry should be related to closed string modes in a compactified

space. However, the explicit analysis was not made because the Higgs mechanism which

implement Kaluza-Klein mass was not known. Similar infinite dimensional symmetries

were also studied in various contexts [13] in string/M theory and we hope that our method

gives a simple direct interpretation to such systems.

This paper is organized as follows. In section 2, we first review the Lorentzian BLG

model [14–16]. We describe the typical structure of the 3-algebra for which the removal of

the ghost field [18, 19] is possible. In section 3, we give a detailed study of the constraint

from the fundamental identity. Such study for two Lorentzian pairs was made in [11] but

we generalize their result by considering an arbitrary number of Lorentzian pairs. We

use a strategy to analyze the constraint for the structure constants directly. Although

we do not claim that we could classify all possible algebras, we find a class of interesting

3-algebras through such analysis, with potential applications to string/M theory. We note

that the many 3-algebras which we found can be realized by Lorentzian extension [14–16]

of Lorentzian Lie algebras. It enables us to analyze some of the Lorentzian BLG models

through gauge theories with Lorentzian Lie algebra symmetry. As we noted, such D-

brane system is by itself an interesting object to study. In section 4, we derive the BLG

1The Lie 3-algebra with zero-norm generators was also studied [10] to construct M2-brane model which

produces the correct entropy O(N3/2) in large N limit. It was suggested that we need 3-algebra instead of

Lie algebra to have such scaling.
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model associated with the simplest Lie 3-algebra with more than one Lorentzian pairs.

We demonstrate that such system typically has massive vector fields where each gauge

field absorbs two degrees of freedom from scalar fields. In section 5, we construct the

BLG model (or super Yang-Mills theory) based on loop algebras which are the simplest

nontrivial examples of generalized Lorentzian Lie (3-)algebra. Finally we comment that

the description of M5-brane [8, 9] can be also regarded as the typical example of the

compactification through the Lorentzian 3-algebra.

2 Lorentzian BLG model

In this section, we review the basic features of the Lorentzian BLG model [14–16]. The

original BLG action for multiple M2-branes is

S = T2

∫

d3xL = T2

∫

d3x (LX + LΨ + Lint + Lpot + LCS), (2.1)

LX = −
1

2
〈DµXI ,DµXI〉, (2.2)

LΨ =
i

2
〈Ψ̄,ΓµDµΨ〉, (2.3)

Lint =
i

4
〈Ψ̄,ΓIJ [XI ,XJ ,Ψ]〉, (2.4)

Lpot = −
1

12
〈[XI ,XJ ,XK ], [XI ,XJ ,XK ]〉, (2.5)

LCS =
1

2
fABCDAAB ∧ dACD +

1

3
fCDA

GfEFGBAAB ∧ ACD ∧ AEF , (2.6)

where T2 is the M2-brane tension. The indices µ = 0, 1, 2 specify the longitudinal directions

of M2-branes; I, J,K = 3, . . . , 10 the transverse directions. The indices A,B,C, . . . denote

components of Lie 3-algebra generators. The covariant derivative is

(DµΦ(x))A = ∂µΦA − fCDB
AAµCD(x)ΦB (2.7)

for Φ = XI ,Ψ.

In order to define the BLG model action, the Lie 3-bracket

[TA, TB, TC ] = fABC
DTD (2.8)

for a Lie 3-algebra must satisfy the following constraints:

• Tri-linearity

• Skew symmetry

• Fundamental identity

fABC
F fFDE

G + fABD
F fCFE

G + fABE
F fCDF

G = fCDE
F fABF

G (2.9)

• Invariant metric 〈TA, TB〉 = hAB :

fABC
EhED + fABD

EhCE = 0 . (2.10)
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The simplest Lorentzian Lie 3-algebra was defined as follows. Let G be a given Lie

algebra. We denote its generators as T i, structure constants f ij
k, and Killing form hij .

Now we define a Lie 3-algebra whose generators are TA = {u, v, T i} such that

[v, TA, TB] = 0, [u, T i, T j] = f ij
kT

k, [T i, T j, T k] = −hklf ij
lv,

〈u, v〉 = 1, 〈T i, T j〉 = hij , otherwise = 0. (2.11)

This 3-algebra satisfies the fundamental identities and the requirement of invariant metric,

so we can use it as the gauge symmetry of BLG model. Since this algebra has a negative-

norm generator u − αv (for α > 0), BLG model has a ghost field. The mode expansion of

the Langrangian becomes (up to total derivatives)

L =

〈

−
1

2
(D̂µX̂I − A′

µXI
u)2 +

i

2
¯̂
ΨΓµD̂µΨ̂ +

i

2
Ψ̄uΓµA′

µΨ̂

+
i

2
¯̂
ΨΓIJXI

u[X̂J , Ψ̂] +
1

4
(XK

u )2[X̂I , X̂J ]2 −
1

2
(XI

u[X̂I , X̂J ])2

+
1

2
ǫµνλF̂µνA′

λ

〉

+ Lgh, (2.12)

Lgh = −

〈

∂µXI
uA′

µX̂I + (∂µXI
u)(∂µXI

v ) −
i

2
Ψ̄vΓ

µ∂µΨu

〉

, (2.13)

where

D̂µΦ := ∂µΦ̂ − [Âµ, Φ̂], F̂µν := ∂µÂν − ∂νÂµ − [Âµ, Âν ] (2.14)

for Φ = XI ,Ψ. As we see, fortunately, the ghost fields decouple, that is, they act only as

Langrange multipliers. Their equations of motions are

∂2
µXI

u = 0, Γµ∂µΨu = 0, (2.15)

and we can set

XI
u = λI := λδI

10, ΨI
u = 0 (2.16)

without breaking any supersymmetry or gauge symmetry [16]. This is motivated by the

Higgs mechanism in BLG model first considered in [17]. The Lagrangian becomes, after

integration over A′,

L = −
1

2
(D̂µX̂I)2 +

i

2
¯̂
ΨΓµD̂µΨ̂ +

λ2

4
[X̂I , X̂J ]2 +

iλ

2
¯̂
ΨΓI [X

I , Ψ̂] −
1

4λ2
F̂ 2

µν , (2.17)

where I, J = 3, . . . , 9. This can be regarded as D2-branes theory in type IIA string theory

which is the compactification of M-theory on a circle.

The origin of the decoupling of the ghost fields comes from the specific way that

Lorentzian generators appear in the 3-algebra. Namely, the generator v is the center of

the 3-algebra and u is not produced in any 3-commutators. This property ensures that the

system is invariant under the translation of the scalar fields XI
u. The decoupling of the
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ghost fields can be made more rigorous [18, 19] by gauging this global symmetry. Namely

by adding extra gauge fields Cµ, χ through

Lnew = −Ψ̄uχ + ∂µXI
uCI

µ , (2.18)

we have an extra gauge symmetry:

δXI
v = ΛI , δCI

µ = ∂µΛI , δΨv = η, δχ = iΓµ∂µη . (2.19)

It enable us to put XI
v = Ψv = 0. The equations of motion by variation of CI

µ, χ give the

assignment (2.16) correctly.

Another important feature of the Lorentzian BLG model is that the assignment of

VEV to XI
u triggers the compactification of 11 dimensional M-theory to 10 dimensional

type IIA theory. The compactification radius of M-direction is given by [16]

λ = 2πR . (2.20)

For various aspects of the Lorentzian model, see for example [20].

3 Analysis of Lie 3-algebra with two or more negative-norm generators

In the following, we consider some generalizations of the Lorentzian 3-algebra invented

in [14–16] by adding pairs of generators with Lorentzian metric. Positive-norm generators

are denoted as ei (i = 1, . . . , N), and Lorentzian pairs as ua, va (a, b = 1, . . . ,M). We

assume that the invariant metric for them is given by the following simple form

〈ei, ej〉 = δij , 〈ua, vb〉 = δab . (3.1)

In terms of the four-tensor defined by

fABCD := fABC
EhED , (3.2)

the invariance of the metric and the skew symmetry of the structure constant imply that

the condition that this 4-tensor is anti-symmetric with respect to all indices.

We also assume that the generators va are in the center of the 3-algebra. This condition

is necessary to apply the Higgs mechanism to get rid of the ghost fields as we have reviewed.

In terms of the 4-tensor this condition is written as

f vaBCD = 0 (3.3)

for arbitrary B,C,D. Therefore the index in the 4-tensor is limited to ei and ua. For the

simplicity of the notation, we write i for ei and a for ua for indices of the 4-tensor, for

example f ijab := f eiejuaub and so on.

We note that there is some freedom in the choice of basis when keeping the metric (3.1)

and the form of 4-tensor (3.3) invariant:

ẽi = Oi
je

j + P i
av

a, ũa = Qa
i e

i + Ra
bu

b + Sa
b vb, ṽa = ((Rt)−1)abv

b, (3.4)

– 5 –



J
H
E
P
0
3
(
2
0
0
9
)
0
4
5

where

OtO = 1, Q = −RP tO, R−1S + (R−1S)t = −P tP . (3.5)

The matrices O and R describe the usual rotations of the basis. The matrix P describes

the mixing of the Lorentzian generators ua, va with ei.

We introduce some notation for the 4-tensor,

f ijkl = F ijkl, faijk = f ijk
a , fabij = J ij

ab, fabci = Ki
abc, fabcd = Labcd . (3.6)

We rewrite the fundamental identity in terms of this notation below in section 3.1.

There are a few comments which can be made without detailed analysis:

• For lower M (i.e. smaller number of Lorentzian pairs (ua, va)), some components of

the structure constants (3.6) vanish identically due to the anti-symmetry of indices.

For example, for M = 1, we need to put J ij
ab = Ki

abc = Labcd = 0. For M = 2, one

may put J ij
ab nonvanishing but we have to keep Ki

abc = Labcd = 0 and so on.

• In the fundamental identity (3.11)–(3.24), there is no constraint on Labcd. It comes

from the fact that the contraction with respect to Lorentzian indices automatically

vanishes due to the restriction of the structure constant (3.3). So it can take arbitrary

value for M ≥ 4. This term, however, is not physically relevant in BLG model, since

they appear only in the interaction terms of the ghost fields which will be erased after

Higgs mechanism.

• A constraint for F ijkl (3.11) is identical to the fundamental identity of a 3-algebra

with the structure constant F ijkl. So if we assume positive definite metric for ei, it

automatically implies that F ijkl is proportional to ǫijkl or its direct sums [21].

• By a change of basis (3.4), various components of the structure constants (3.6) mix.

For example, if we put O = R = 1 for simplicity and keep only the matrix P nontrivial

(which implies S = −1
2P tP ), the structure constant in terms of the new basis {ẽi,

ũa, ṽa} are given as

F̃ ijkl = F ijkl, (3.7)

f̃ jkl
a = f jkl

a + P i
aF

ijkl, (3.8)

J̃ ij
ab = J ij

ab + P k
a f ijk

b − P k
b f ijk

a + F ijklP k
a P l

b , (3.9)

K̃i
abc = Ki

abc + P j
aJ ij

bc − P j
b J ij

ac + P j
c J ij

ab,

+f ikl
c P k

a P l
b − f ikl

b P k
a P l

c + f ikl
a P k

b P l
c + P j

aP k
b P l

cF
ijkl . (3.10)

We will find that many solutions of the fundamental identities can indeed be iden-

tified with well-known 3-algebra after such redefinition of basis. In this sense, the

classification of the Lorentzian 3-algebra has a character of cohomology, namely only

solutions which can not reduce to known examples after all changes of basis give rise

to physically new system.
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In the following, we give a somewhat technical analysis of the fundamental iden-

tity (2.9). Solutions which we found are summarized in section 3.5. We do not claim

that our analysis exhausts all the possible solutions. But as we will see in the later sec-

tions, they play an important physical role in string/M theory compactification.

3.1 Fundamental identities

We rewrite the fundamental identity (2.9) in the notation (3.6):

F ijknFnlmp + F ijlnF knmp + F ijmnF klnp − F klmnF ijnp = 0, (3.11)

F ijknfnlm
a + F ijlnfknm

a + F ijmnfkln
a − F klmnf ijn

a = 0, (3.12)

f ijn
a Fnklm + f ikn

a F jnlm + f iln
a F jknm − f inm

a F jkln = 0, (3.13)

(f ijn
a fnkl

b + f ikn
a f jnl

b + f iln
a f jkn

b ) + F jklnJ in
ab = 0, (3.14)

J im
ab Fmjkl + Jjm

ab F imkl + Jkm
ab F ijml + J lm

ab F ijkm = 0, (3.15)

(J im
ab fmjk

c + Jjm
ab f imk

c + Jkm
ab f ijm

c ) − F ijkmKm
abc = 0, (3.16)

F ijknJnl
ab − F ijlnJnk

ab − f ijn
a fnkl

b + f ijn
b fnkl

a = 0, (3.17)

(J im
ab fmjk

c − J im
ac fmjk

b ) + (f ijm
a Jmk

bc − f ikm
a Jmj

bc ) = 0, (3.18)

−K l
abcf

lij
d + K l

abdf
lij
c + J il

abJ
lj
cd − J il

cdJ
lj
ab = 0, (3.19)

(f ikm
a Jmi

bc + f jkm
b Jmi

ca + f jkm
c Jmi

ab ) + Km
abcF

jkim = 0, (3.20)

(Jjl
abJ

li
cd + Jjl

adJ
li
bc − Jjl

acJ
li
bd) − f jil

c K l
abd = 0, (3.21)

−Jki
abK

k
cde − Jki

be Kk
acd + Jki

aeK
k
bcd + Jki

cdKk
abe = 0, (3.22)

f ijl
a K l

bcd − f ijl
b K l

acd + f ijl
c K l

abd − f ijl
d K l

abc = 0, (3.23)

Ki
abcK

i
def − Ki

adeK
i
bcf + Ki

acfKi
bde − Ki

abfKi
cde = 0. (3.24)

3.2 Lorentzian extension of Nambu bracket

Let us examine the case with F ijkl 6= 0 first. As we already mentioned, eq. (3.11) implies

that F ijkl ∝ ǫijkl and its direct sum. So without losing generality, one may assume N = 4

and F ijkl = ǫijkl for the terms which include nontrivial contraction with F ijkl.

Suppose f ijk
a 6= 0 for some a. Then by the skew-symmetry of indices they can be

written as f ijk
a = ǫijklP

a
l for some P a

l . This expression actually solves (3.12), (3.13).

However, this form of f ijk
a is exactly the same as the right hand side of (3.8). It implies

that such f ijk
a can be set to zero by a redefinition of basis.

Therefore, at least when the 3-algebra is finite dimensional, it is impossible to construct

Lorentzian algebra with nontrivial F ijkl 6= 0. The situation is totally different if the 3-

algebra is infinite dimensional [8, 9] which is related to the description of M5-brane (for the

various aspects of M5-brane in BLG context, see also [22] for example). The realization of

the three-algebra was given as follows. We take N as a compact three dimensional manifold

where Nambu-Poisson bracket [23],

{f1, f2, f3} =
∑

a,b,c

ǫabc ∂af1∂bf2∂cf3 (3.25)

– 7 –
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is well defined. Namely N is covered by the local coordinate patches where the coordinate

transformation between the two patches keeps the 3-bracket (3.25) invariant. The simplest

examples are T 3 and S3 [8, 10]. If we take χi(y) as the basis of H: the Hilbert space

which consists of functions which are globaly well-defined on N , and one can choose a

basis mutually orthonormal with respect to the inner product,

〈χi, χj〉 :=

∫

N
d3y χi(y)χj(y) = δij . (3.26)

It is known that the structure constant

F ijkl = 〈
{

χi, χj , χk
}

, χl〉 (3.27)

satisfies the fundamental identity (3.11).

We are going to show that it is possible to extend this 3-algebra with the additional

generators with the Lorentzian signature. For simplicity, we consider the case N = T 3.

The Hilbert space H is spanned by the periodic functions on T 3. If we write the flat

coordinates on T 3 as ya (a = 1, 2, 3), where the periodicity is imposed as ya ∼ ya + pa, and

pa ∈ Z. The basis of H is then given by

χ~n(y) := e2πinaya
, ~n ∈ Z3 , (3.28)

with the invariant metric and the structure constant:

〈χ~n, χ~m〉 = δ(~n + ~m) , (3.29)

F~n~m~l~p = (2πi)3ǫabcn
amblcδ(~n + ~m +~l + ~p) . (3.30)

The idea to extend the 3-algebra is to introduce the functions which are not well-

defined on T 3 but the Nambu bracket among H and these generators remains in H. For

T 3, such generators are given by the functions ua = ya. The fundamental identity for the

Nambu-bracket comes from the definition of derivative and it does not matter whether or

not the functions in the bracket is well-defined globally. Therefore even if we include extra

generators the analog of fundamental identity holds. More explicitly we define the extra

structure constants as

f~n~m~l
a := 〈

{

ua, χ~n, χ~m
}

, χ
~l〉 = (2πi)2ǫabcn

bmcδ(~n + ~m +~l), (3.31)

J~n~m
ab := 〈

{

ua, ub, χ~n
}

, χ~m〉 = (2πi)ǫabcn
cδ(~n + ~m), (3.32)

K~n
abc := 〈

{

ua, ub, uc
}

, χ~n〉 = ǫabcδ(~n). (3.33)

It is not difficult to demonstrate explicitly that they satisfy all the fundamental identi-

ties (3.11)–(3.24).

We have to be careful in the treatment of the new generators. For example, the inner

product (3.26) is not well-defined if the function is not globally well-defined on N . The fact

that the structure constants (3.30)–(3.33) satisfies the fundamental identities (3.11)–(3.24)

– 8 –
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implies that we can define the inner product abstractly as (3.1). Namely we introduce extra

generators va (a = 1, 2, 3) and define

〈ua, vb〉 = δab, 〈ua, χ
~n〉 = 〈va, χ

~n〉 = 〈ua, ub〉 = 〈va, vb〉 = 0 (3.34)

while keeping (3.29).

We also need to be careful in the definition of the three-bracket itself. The naive

Nambu bracket needs to be modified to make the structure constant FABCD totally anti-

symmetric in all four indices. This condition is broken in the original Nambu bracket after

the introduction of the extra generators ua. We have to come back to our original defini-

tion of 3-algebra where this symmetry is manifest. This implies the following redefinition

of the 3-algebra:

[

χ~n, χ~m, χ
~l
]

= F~n~m~l
~pχ

~p − f~n~m~l
a va, (3.35)

[

ua, χ~n, χ~m
]

= f~n~m
a ~l

χ
~l + J~n~m

ab vb, (3.36)
[

ua, ub, χ~n
]

= J~n
ab ~mχ~m − K~n

abcv
c, (3.37)

[

ua, ub, uc
]

= Kabc~nχ~n. (3.38)

This 3-algebra may be regarded as the “central extension” of the Nambu-Poisson bracket.

The additional factors which are proportional to va on the right hand side is necessary to

make the metric invariant. One might worry if the fundamental identity may be violated

by the redefinition of the algebra. In this example, fortunately this turns out not to be

true. So we have a consistent 3-algebra with Lorentzian signiture. It may be useful to

repeat our emphasis that, although ua was originally defined through ill-defined function

ya, we have to neglect this fact to define the metric and the 3-algebra.

While the 3-algebra (3.35)–(3.38) is new, we will see later in section 5.3 that the BLG

model based on it turns out to be the same as the M5 models defined in [8, 9, 16] although it

was not noticed explicitly. A glimpse of this fact appeared in §7 in [16] where a subalgebra

of (3.35)–(3.38) appeared and the relation with the Lorentzian BLG model and M5 model

was discussed. We will give more comments on this issue later in section 5.3.

It is straightforward to obtain similar Lorentzian extensions of Nambu-Poisson type

Lie 3-algebras defined on different manifolds N such as S3 and S2 × S1. So far, the only

nontrivial Lie 3-algebra with positive definite metric are A4 and the Nambu-Poisson type

3-algebras. The examples we consider here would exhaust the Lorentzian extensions which

can be obtained from them.

3.3 Constraints from the fundamental identities for F ijkl = 0

In the following, we restrict ourselves to the case F ijkl = 0. The fundamental identi-

ties (3.11)–(3.24) are now simplified to be the following:

fni(j
a f

kl)n
b = 0, (3.39)

f ijm
(a

fmkl
b) = 0, (3.40)
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f ijm
a fmkl

b + fkim
a fmjl

b + f jkm
b fmil

a = 0, (3.41)

J
l(i
ab f jk)l

c = 0, (3.42)

f ijk
(a Jkl

bc) = 0, (3.43)

J il
a(bf

ljk
c) + J

l(j
bc fk)il

a = 0, (3.44)

2Kk
ab(cf

kij
d) = J ik

abJ
kj
cd − J ik

cdJkj
ab , (3.45)

f ijk
a Kk

bcd = 3J ik
a(bJ

kj
cd), (3.46)

3Ki
ab(cJ

ij
de) = Ki

cdeJ
ij
ab, (3.47)

J ij
a(bK

j
cde) = 0, (3.48)

f ijk
(a Kk

bcd) = 0, (3.49)

3Ki
ab(cK

i
de)f = Ki

cdeK
i
abf . (3.50)

In the above, we used the notation that all indices in parentheses are fully antisymmetrized.

For instance,

Aa(bBcd)e :=
1

6
(AabBcde + AacBdbe + AadBbce − AabBdce − AacBbde − AadBcbe) . (3.51)

The constraints above are not all independent. We can use (3.41) alone to derive (3.39)

and (3.40) as follows. Taking (3.41) and replacing the indices as (ijk) → (jki) and (ab) →

(ba) and subtracting the derived equation from (3.41), we get (3.40). It is also obvious

that (3.40) and (3.41) implies (3.39).

Similarly, (3.44) can be easily derived from (3.42) and (3.43).

3.4 Solutions

In this subsection, we try to solve the fundamental identities displayed above and find a

class of solutions.

First, a solution for (3.39) is to use a direct sum of Lie algebras g = g1 ⊕ · · · ⊕ gn, We

divide the values of indices into n blocks I = I1 ∪ · · · ∪ In and let

f ijk
a = γα

a f ijk
α , (3.52)

where f ijk
α is defined by

f ijk
α =

{

f ijk
gα i, j, k ∈ Iα,

0 otherwise.
(3.53)

Here f ijk
gα is the structure constant for gα while γα

a is a real number.

Note that the number n does not have to equal M . It is possible to have some of the

sets Ia empty. An example has g = g1 and all Ia6=1 empty. In this case, for γα
a = δα

a , we

have f ijk
1 = f ijk

g1
and f ijk

a = 0 for all a 6= 1.
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If all the other components of the 3-algebra structure constant vanish, one obtains

from (3.52) a set of solutions to the fundamental identity. The BLG model for this 3-

algebra is not new, however. For each range of index, say Iα, we have

[ei, ej , ek] = −
∑

a

γα
a va , [ua, ei, ej ] =

∑

k

γα
a f ijk

α ek . (3.54)

By a suitable rotation (3.4) with

v′1 =
∑

a

γα
a va, (3.55)

we always have

[ei, ej , ek] = −v′a , [u′a, ei, ej ] = δa1

∑

k

f ijk
α ek . (3.56)

Therefore it is reduced to the standard Lorentzian Lie 3-algebra for M = 1 after the

restriction of indices to Iα.

In order to obtain something new, we have to allow other coefficients to be nonzero.

The simplest class of solutions can be found when f ijk
a = 0 for i, j, k ∈ Ia. In this case,

for this range Ia, arbitrary anti-symmetric matrix J ij (i, j ∈ Ia) solves the constraints

(this case is a special case of solutions in [11]). We will study the BLG model for this

case in section 4. It demonstrates the essential feature that the supersymmetric system

acquires mass proportional to eigenvalues of J . However, since we put f ijk
a = 0, there is

no interaction. In order to have the interacting system, we need nonvanishing f ijk
a .

For simplicity, let us assume that there is a suitable basis of generators such that the

solution (3.52) is simplified as

f ijk
a =

{

f ijk
a i, j, k ∈ Ia,

0 otherwise,
(3.57)

where the indices are divided into n disjoint sets I = I1 ∪ · · · ∪ In, and f ijk
a is the structure

constant for a Lie algebra ga.

Starting with (3.57), we can solve all the constraints (3.39)–(3.50) as follows,

while (3.57) already solves (3.39)–(3.41).

Eq. (3.43) is trivial if two of the indices a, b, c are identical. Assuming (3.57), eq. (3.43)

imposes no constraint on J ij
ab if i ∈ Ia or i ∈ Ib. In general, if f ijk

c 6= 0 for c 6= a and c 6= b,

then J ij
ab = 0 if i ∈ Ic. Hence we consider the case

J ij
ab 6= 0 only if i, j ∈ Ia or i, j ∈ Ib. (3.58)

Eq. (3.44) is now trivial if all indices a, b, c are different. If two of the indices are the same,

it is equivalent to (3.42).

According to (3.42), Jab is a derivation for both Lie algebras ga and gb. A derivation

D is a map from g to g such that

D([ei, ej ]) = [D(ei), ej ] + [ei,D(ej)]. (3.59)
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As a result of (3.42), one can define a derivations Dab by

Dab(e
i) = J ij

abe
j . (3.60)

The simplest case is when Jab corresponds to an inner automorphism, so

J ij
ab = Λk

abf
ij
a k − Λk

baf
ij
b k, (3.61)

where Λk
ab = 0 unless k ∈ Ia. (Note that the indices a, b are not summed over in (3.61).) In

this case Dab(·) = [(Λk
ab −Λk

ba)ek, · ]. It will be more interesting if Dab instead corresponds

to an infinitesimal outer automorphism (an outer derivation).2

If all indices a, b, c, d are all different, (3.45) is trivial due to (3.58). If a = d 6= b 6=

c, (3.45) says that the Lie bracket [Jab, Jac] is an inner automorphism. The solution of (3.45)

is in general given by

Kabc := Ki
abce

i = [Dac,Dbc] + [Dba,Dca] + [Dcb,Dab] + Cabc, (3.62)

where the antisymmetric tensor Cabc = Ci
abc is a central element in g. Since all derivations of

a Lie algebra is always a Lie aglebra, the Lie bracket [Dab,Dcd] satisfies the Jacobi identity.

For Jab given by an inner automorphism (3.61), Ki
abc can be solved from (3.45) to be

Ki
abc = Λj

abΛ
k
acf

ijk
a + Λj

bcΛ
k
baf

ijk
b + Λj

caΛ
k
cbf

ijk
c + Ci

abc. (3.63)

(Indices a, b, c are not summed over in this equation.) The term Λj
abΛ

k
acf

ijk
a corresponds to

the Lie bracket of the two automorphisms generated by Λab and Λac on ga. However, the

case of Jab generating an inner automorphism is not interesting because Jab and Ki
abc can

be both set to zero after a change of basis (3.8), (3.9),

e′i = ei −
∑

b

Λi
abv

b for i ∈ Ia, (3.64)

u′
a = ua −

∑

b

Λi
bae

i. (3.65)

Therefore, in the following we will focus on the case when Jab is an outer automorphism.

When all indices a, b, c, d, e are different, (3.47) can be easily satisfied if

Ci
abc = 0 unless i ∈ Ia ∪ Ib ∪ Ic. (3.66)

Together with (3.58), this implies that Ki
abc (3.62) vanishes unless i ∈ Ia ∪ Ib ∪ Ic.

Due to (3.58) and (3.66), eq. (3.47) is trivial if all indices a, b, c, d, e are different. If

e = a, it is

Ki
abcJ

ij
ad + Ki

acdJ
ij
ab + Ki

adbJ
ij
ac = 0. (3.67)

One can then check that this follows from (3.62) and the constraint

Dab(Cacd) + Dac(Cadb) + Dad(Cabc) = 0 (3.68)

2We have to keep in mind that the existence of such automorphisms is quite nontrivial. We will come

back to this issue below.
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as a result of the Jacobi identity of the Lie bracket of Dab’s. The same discussion applies

to (3.46), (3.48), (3.49) and (3.50).

Before closing this subsection, let us comment on infinitesimal outer automorphisms.

For finite dimensional Lie algebra, we have two examples. The first example is when

the Lie algebra is Abelian, and any nontrivial linear map of the generators is an outer

automorphism. The 2nd example is when the Lie algebra is that of matrices composed of

upper triangular blocks

(

A B

0 C

)

, (3.69)

where A,B,C are m × m, m × n and n × n matrices, respectively. An arbitrary scaling

of the off-diagonal block B is an outer automorphism. In both of these examples, the

coefficients of ei in the expansion of XI or Ψ do not participate in interactions in the BLG

model, unless ei is inert to the outer derivation. Hence the appearance of outer derivation

in these cases is irrelevant to physics. A nontrivial example is found when g is an infinite

dimensional Lie algebra. This example is studied in section 5.

3.5 Summary of the 3-algebra solutions

To summarize the result of our construction of a new 3-algebra, the general solution of the

fundamental identity for our ansatz

[ua, ub, uc] = Ki
abcei + Labcdv

d, (3.70)

[ua, ub, e
i] = J ij

abej − Ki
abcv

c, (3.71)

[ua, e
i, ej ] = J ij

abv
b + f ijk

a ek, (3.72)

[ei, ej , ek] = −f ijk
a va, (3.73)

is given by (3.57), (3.60) and (3.62), which are repeated here for the convenience of

the reader,

f ijk
a =

{

f ijk
a i, j, k ∈ Ia,

0 otherwise,
(3.74)

J ij
abe

j = Dab(e
i) for a derivation Dab, (3.75)

Kabc := Ki
abce

i = [Dac,Dbc] + [Dba,Dca] + [Dcb,Dab] + Cabc, (3.76)

where Cabc are central elements in g satisfying (3.66) and (3.68)

Ci
abc = 0 unless i ∈ Ia ∪ Ib ∪ Ic, (3.77)

Dab(Cacd) + Dac(Cadb) + Dad(Cabc) = 0. (3.78)

The nontrivial part of the metric is given by

〈ei, ej〉 = gij , 〈ua, v
b〉 = δb

a , (3.79)
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where gij is the Killing form of the Lie algebra g. Although we have assumed that gij is

positive definite in the derivation above, it is obvious that the 3-algebra can be directly

generalized to a generic Killing form which is not necessarily positive definite.

Compared with the 3-algebra discovered in [14, 16, 24], the 3-algebra constructed above

contains more information. While ei’s are generators of a Lie algebra g = g1 + · · · + gn,

Jab’s correspond to infinitesimal outer automorphisms (outer derivations), and Kabc encodes

both the commutation relations among Jab’s and choices of central elements in g.

Based on this analysis, we will analyze the BLG model for some examples of Lorentzian

3-algebras:

1. M = 2, J ij
ab = ǫabJ

ij (i, j = 1, . . . , n), others= 0 (section 4.1): This is the simplest

finite dimensional example where some character of the Lorentzian symmetry is dis-

played. Namely the BLG model defines the N = 8 supersymmetric vector multiplets.

2. M = 2, J ij
ab = ǫabJ

ij , f ijk
1 6= 0, others= 0 (section 4.3): This is the simplest nontrivial

example which contains the interaction. We will present our result by studying the

Yang-Mills system (2.17) where the gauge symmetry is defined by Lorentzian Lie

algebra. This is possible since the 3-algebra can be written in the form (4.38). In

such case, one can skip the discussion of eliminating one pair of ghost fields. It also

illuminate the structure of the Yang-Mills system with Lorentzian Lie algebra.

3. Lie 3-algebra associated with affine Kac-Moody Lie algebra (section 5.1): This is the

special case of above example where the Lorentzian Lie algebra is given by the affine

Lie algebra. It illuminates how Kaluza-Klein mass is generated by the ghost fields.

4. Lie 3-algebra associated with general loop algebras (section 5.2): By this general-

ization we describe the compactification on general torus T p with constant B field

flux on it.

5. Lorentzian 3-algebra with F ijkl 6= 0 (section 5.3): We give a brief explanation how

construction of M5-brane [8, 9, 16] can be related to the Lorentzian 3-algebra (3.27),

(3.31)–(3.33) and how the analysis in [8, 9, 16] can be related to the analysis in

this paper.

4 BLG model for Lorentzian 3-algebra with J
ij

ab 6= 0

In this section, we describe generic features of BLG model when J ij
ab 6= 0. We will first

start with the “minimal” choice, namely we set other structure constants to zero,

F ijkl = f ijk
a = Ki

abc = 0 . (4.1)

We note that this is the simplest example considered in [11]. For this simplest choice,

we see that BLG model gives rise to a free N = 8 supersymmetric massive gauge theory

after the Higgs mechanism is used to eliminate the negative-norm fields. After including

other structure constants, we have an interacting theory. The direct analysis of interacting

model from BLG model itself is somehow complicated and less illuminating, hence we will

consider its equivalent version, the super Yang-Mills theory, in the following.
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4.1 Component expansion

The BLG action is defined by (2.1)–(2.6), with the indices A,B = (ei, ua, va). For sim-

plicity, we first study the special case when the only nonvanishing part of the structure

constant of the 3-algebra is

fuaubij = ǫabJij , (4.2)

where a, b = 1, 2 and i, j = 1, . . . , n.

As usual, we expand the relevant parts of the fields as

XI = XI
i ei + XI

aua + XI
ava, (4.3)

Ψ = Ψie
i + Ψaua + Ψava, (4.4)

∑

ij

JijAµij =: A′
µ, (4.5)

Aµiua = −Aµuai =:
1

2
Bµia, (4.6)

Aµuaub
=:

1

2
Cµǫab . (4.7)

In terms of the modes, the covariant derivative (2.7) becomes

(DµXI)i = ∂µXI
i + ǫabJijBµjaX

I
b + CµJijX

I
j ,

(DµXI)ua = ∂µXI
a ,

(DµXI)va = ∂µXI
a + ǫab(A

′
µXI

b + JijBµbiX
I
j ), (4.8)

and similar expressions for Ψ.

The Chern-Simons action (2.6) can be rewritten in terms of the component gauge

fields as

LCS = ǫµνλ(A′
µ∂νCλ −

1

2
JijBµia(∂νBλjb + CνJjkBλkb))

=: ǫµνλ(A′
µ∂νCλ −

1

2
JijBµiaD̂νBλjb). (4.9)

The gauge field A′
µ appears only in the Chern-Simons term. It does not participate in the

dynamics but only imposes the flatness condition ∂[νCµ] = 0 as the equation of motion.

In the original BLG model, the gauge symmetry transformations are

δXI
A = Λ̃B

AXI
B ,

δΨA = Λ̃B
AΨB,

δÃ B
µ A = ∂µΛ̃B

A − Λ̃B
CÃ C

µ A + Ã B
µ CΛ̃C

A. (4.10)

We introduce the components of the gauge parameters as

Λuaub
=:

1

2
γ, Λiua =:

1

2
βia, JijΛij =: α . (4.11)
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Then the gauge symmetry transformation in terms of the modes becomes

δΦi = ǫabJijβjbΦa − γJijΦj ,

δΦa = 0,

δΦa = αǫabΦb − JijǫabβjbΦa, (4.12)

δA′
µ = ∂µα,

δBµib = ∂µβib + JijβjbCµ − JijBµjbγ,

δCµ = ∂µγ , (4.13)

where Φ = XI ,Ψ. The gauge transformations for the gauge fields A′
µ, Cµ associated with

the parameters α, γ are Abelian.

In the original BLG model, the supersymmetry transformations are

δXI
A = iǭΓIΨA,

δΨA = DµXI
AΓµΓIǫ −

1

6
XI

BXJ
CXK

D fBCD
AΓIJKǫ,

δÃ B
µ A = iǭΓµΓIX

I
CΨDfCDB

A, (4.14)

where Λ̃B
A = ΛCDfCDB

A. So, in terms of the components, the nontrivial parts of the

supersymmetry transformation (namely, for Ψ and Ãµ) become

δΨi = DµXI
i ΓµΓIǫ +

1

2
ǫabJijX

I
aXJ

b XK
j ΓIJKǫ,

δΨa = ∂µXI
aΓµΓIǫ,

δΨa = (DµX)vaΓµΓIǫ +
1

2
ǫabJijX

I
i XJ

j XK
b ΓIJKǫ,

δA′
µ = iǭΓµΓIX

I
i ΨjJij ,

δBµib = iǭΓµΓIX
I
[iΨb],

δCµ = iǭΓµΓIX
I
aΨbǫab . (4.15)

By the definition of the BLG model, we obtain an N = 8 SUSY system with

ghost fields.

4.2 Elimination of ghosts

Variation of the Lagrangian by fields XI ,Ψ gives

∂2XI
a = 0, Γµ∂µΨa = 0. (4.16)

As already reviewed in section 2, we solve them by the assignment [16] or the introduction

of extra gauge symmetry [18, 19]:

XI
a = λI

a, Ψa = 0; a = 1, 2 . (4.17)

It is clear that this choice does not break gauge symmetry nor supersymmetry, since the

transformation of these fields is closed.
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The Lagrangian is simplified considerably after inserting these VEV’s:

L = −
1

2

∑

i

(D̂µXI
i + ǫabJijBµjaλ

I
b)

2 +
i

2
Ψ̄iΓ

µD̂µΨi

−
1

2
(J2)ij∆

2XI
i PIJXJ

j −
i

2
∆Ψ̄iΓ

‖JijΨj

+ǫµνλ

(

A′
µ∂νCλ −

1

2
JijBµiaD̂νBλjb

)

, (4.18)

where

D̂µΦi := ∂µΦi + CµJijΦj, (4.19)

∆2 := |~λ1|
2|~λ2|

2 − (~λ1 · ~λ2)
2, (4.20)

PIJ := δIJ −
∑

a=1,2

λI
aπ

J
a , (4.21)

~π1 :=
1

∆2
(|~λ2|

2~λ1 − (~λ1 · ~λ2)~λ2), ~π2 = (1 ↔ 2) , (4.22)

Γ‖ :=
1

2∆
ΓIJǫabλ

I
aλ

J
b , (Γ‖)2 = 1. (4.23)

The ~πa (a = 1, 2) is the dual basis of ~λa, namely (~πa, ~λb) = δab. The matrix PIJ is a

projector with codimension two which satisfies P~λa = 0 (a = 1, 2) and P 2 = P . The

potential implies that six components of XI become massive after putting VEV to XI
a ,

while the two components in the plane spanned by ~λa remain massless. Actually the latter

can be removed by redefinition of Bµja,
3

B′
µia = Bµia + δBµia (4.24)

δBµia = D̂µβia, βia := (J−1)ijǫabπbJXJ
j . (4.25)

Since this redefinition takes the form of the gauge transformation for Bµia, it does not

change the form of Chern-Simons term. The gauge symmetry associated with βia is fixed

by this manipulation and will not survive in the gauge fixed Lagrangian.

After this gauge transformation, the Chern-Simons Lagrangian LCS remains the same

while the kinetic term for X becomes

LX = −
1

2

∑

i

(D̂µXI)iPIJ(D̂µXJ)i +
1

2

∑

Bµja(J
2)jkQabB

µ
kb, (4.26)

Qab := ǫaa′ǫbb′(~λa′ , ~λb′). (4.27)

The second term in LX is the mass term for the gauge potential Bµia.

To see the mass term for gauge fields more explicitly, we combine the relevant parts

from LCS and LX to give the action for Bµia,

L′
B = −

1

2
ǫµνλJijBµi1(Fνλ)j2 +

1

2

∑

Bµja(J
2)jkQabB

µ
kb , (4.28)

3 If the matrix Jij is not invertible, one can first decompose the linear space {ei} into two parts: the

part on which Jij is trivial and the part on which J is invertible. We focus our attention on the latter part.
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where (Fνλ)ja = (D̂νBλ)ja − (D̂λBν)ja. In the second term, we used partial integration.

Since there are no derivatives of Bµi1, we integrate over them, and

LB →
1

Q11

(

−
1

4

∑

(Fνλ)k2
2 +

1

2
(J2)ij∆

2Bµi2B
µ

j2

)

. (4.29)

The gauge symmetry is now reduced to Abelian transformations,

δΦi = −γJijΦj, δBµia = −JijBµjaγ, δA′
µ = ∂µα, δCµ = ∂µγ . (4.30)

They are, however, mostly trivial since the gauge field Cµ which appears in the covariant

derivative is required to be flat by the equation of motion.

In the end, we find that we have n massive vector fields Bµi2, 6n massive scalars

P IJXJ
i =: (X ′)Ii and 8n fermion fields Ψi. The mass spectrum of this supersymmetric

system is given by

m2 = eigenvalues of J2∆2. (4.31)

We note that this mass formula is invariant under SL(2,R) transformations:

~λ′
a = gab

~λb, gab ∈ SL(2,R) . (4.32)

This property is natural if we want to associate the system with T 2 compactification of

M-theory, so that the mass spectrum corresponds to the Kaluza-Klein modes. This feature

becomes more explicit in the example considered in the next section.

The original supersymmetry remains the same (N = 8) after the Higgs mechanism,

δX ′I
i = iǭPIJΓJΨi, (4.33)

δΨi = DµXI
i PIJΓµΓJǫ + ∆JijX

I
j PIJΓJΓ‖ǫ, (4.34)

δA′
µ = iǭΓµΓIPIJXJ

i ΨjJij , (4.35)

δCµ = 0 . (4.36)

4.3 Inclusion of f ijk
a 6= 0

By turning on f ijk
a 6= 0, one may include interacting non-Abelian gauge symmetry in the

action. For simplicity, we set

f ijk
1 6= 0, f ijk

2 = 0, J ij 6= 0. (4.37)

In this case, we can rewrite it as

[u1, T
A, TB ] = fAB

CTC ,

[v1, T
A, TB ] = 0,

[TA, TB , TC ] = −hCDfAB
Dv1, (4.38)

where A,B, . . . = {u2, v2, i}, f ijk := f ijk
1 and fu2ij := J ij . This algebra is similar to that

of [14–16], that is, a (u1, v1)-extension of Lie 3-algebra (2.11). A different point is that
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this Lie 3-algebra {TA} = {T i, u2, v2} has Lorentzian generators, while that of [14–16] is a

standard (positive-definite) Lie algebra.

In this subsection, we denote generators of this algebra as {ei, u, v}, instead of

{T i, u2, v2}. Then the metric (or Killing form) and structure constant is

〈ei, ej〉 = δij , 〈u, v〉 = 1;

f ijk, fuij = J ij , otherwise = 0, (4.39)

where i = 1, . . . , N . The Jacobi identity is written as

f ijlf lkm + f jklf lim + fkilf ljm = 0, (4.40)

f ijlJ lk + f jklJ li + fkilJ lj = 0, (4.41)

which are consistent with the fundamental identity for the Lie 3-algebra {T i, u1,2, v1,2}.

This is the simplest “Lorentzian extension” of Lie algebra,

[ei, ej ] = f ij
ke

j + J ijv, [u, ei] = J ijej . (4.42)

This extension is trivial if J ij is an inner automorphism

J ij = f ij
kα

k (4.43)

for some parameter αk. One may then redefine the basis

e′i = ei + αiv, u′ = u − αie
i, v′ = v, (4.44)

such that the algebra becomes the direct sum of the original Lie algebra and Lorentzian

pairs:

[e′i, e′j ] = f ij
ke

′k, other commutators = 0 ; (4.45)

〈e′i, e′j〉 = δij , 〈u′, v′〉 = 1, other inner products = 0 . (4.46)

In the following, we will focus on the nontrivial case where J gives an infinitesimal outer

automorphism.

As we explained in section 2, (according to [16],) BLG model with Lorentzian Lie

3-algebra results in super Yang-Mills theory with Lie algebra. So, let us consider the Yang-

Mills theory coupled with scalar fields XI (I = 1, . . . n) and spinor fields Ψ based on this

extended algebra:

L = −
1

2
〈DµXI ,DµXI〉 +

λ2
1

4
〈[XI ,XJ ], [XI ,XJ ]〉

+
i

2
〈Ψ̄,ΓµDµΨ〉 +

iλ1

2
〈Ψ̄,ΓI [X

I ,Ψ]〉 −
1

4λ2
1

〈FµνFµν〉 (4.47)

=: LX + Lpot + LΨ + Lint + LA , (4.48)

where XI takes the adjoint representation

XI = XI
i ei + XI

uu + XI
vv, (4.49)
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(DµXI)i = ∂µXI
i − f jk

iAµjX
I
k − JjiCµXI

j + JjiAµjX
I
u

=: (D̂µXI)i + JjiAµjX
I
u, (4.50)

(DµXI)u = ∂µXI
u, (4.51)

(DµXI)v = ∂µXI
v + J ijAµiX

I
j , (4.52)

Aµu =: Cµ, Aµv =: Bµ (4.53)

and similar expressions for Ψ. The covariant derivative corresponding to the gauge sym-

metry generated by ei should thus be defined as

D̂µ = ∂µ − CµDu − Aµie
i, (4.54)

where Du is the derivation defined by J :

Du(ei) = J ijej . (4.55)

On the right hand side of (4.54), ei is used to imply the adjoint action of ei, namely

ei(x) = [ei, x]. The gauge transformation is written as

δΦi = f jk
iǫjΦk + JkiγΦk − JjiǫjΦu, (4.56)

δΦu = 0, (4.57)

δAµi = ∂µǫi + f jk
iǫjAµk + JkiγAµk − JjiǫjCµ

=: (D̂µǫ)j + JjiγAµj (4.58)

for Φ = XI ,Ψ.

The kinetic term for XI becomes

LX =
1

2
(D̂µXI

i + JjiAµjX
I
0 )2 + ∂µXI

u(∂µXI
v − J ijAµiX

I
j ) . (4.59)

The variation of XI
v gives ∂2XI

u = 0. So we take it as constant as before,

XI
u = λ2δI1 . (4.60)

After imposing this VEV,

LX = −
1

2

n
∑

I′=2

(D̂µXI′

i )2 −
1

2λ2
1

F 2
µu, (4.61)

where

Fµu := [D̂µ, D̂u], (4.62)

D̂u := λ1(λ2Du + X1
i ei). (4.63)

We are thus led to interpret Du (or J) as the derivative of a certain noncommutative space

in the direction of Xu. The situation here is reminiscent of the result of quotient conditions

in the context of Matrix Models in dealing with orbifolds and orientifolds [25]. In analogy,

since we have taken the VEV of Xu to be in the direction of X1, X1
j plays the role of a gauge
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potential and Jij that of a covariant derivative on a noncommutative space, and thus D̂u

mimics a covariant derivative. We will see in the next section that for the compactification

on a circle, D̂u is indeed the covariant derivative in the compactified direction.

If we fix the gauge by X1
i = 0, the second term in (4.61) becomes

−
λ2

2

2
(J2)ijAµiAµj . (4.64)

This is the mass term for vector bosons.

The potential term is

Lpot =
λ2

1

4

n
∑

I′,J ′=2

[XI′ ,XJ ′

]2 −
1

2

n
∑

J ′=2

(D̂uXJ ′

)2. (4.65)

If we gauge away X1
i using the gauge symmetry, the last term above is simply

−
λ2

1λ
2
2

2

n
∑

J ′=2

(J2)ijX
J ′

i XJ ′

j . (4.66)

It gives the mass term for XJ ′

with exactly the same mass as eq. (4.31) with ∆ = λ1λ2.
4

The kinetic term for the gauge field becomes

−
1

4λ2
1

〈Fµν , Fµν〉 = −
1

4λ2
1

{

(Fµνi)
2 + FµνuFµν

v

}

, (4.67)

where

Fµνi = ∂µAνi − ∂νAµi − f jk
iAµjAνk + J ij(CµAjν − CνAjµ), (4.68)

Fµνu = ∂µCν − ∂νCµ, (4.69)

Fµνv = ∂µBν − ∂νBµ − J ijAµiAνj . (4.70)

Variation of gauge field Bµ gives a free equation of motion for Cµ,

∂µ∂[µCν] = 0 . (4.71)

If we start from the BLG action (4.18), we have slightly different Lagrangian,

LA′C = ǫµνλA′
µ∂νCλ, (4.72)

where A′
µ is an auxiliary field. From the viewpoint of the SYM, although it is not present

from the beginning, one can add this term as a way to gauge the global symmetry of

translation of Cµ, analogous to (2.18), where we gauged the translation of Xu and Ψu. By

variation of A′
µ, Cµ becomes topological and pure gauge. Hence we should set Cν to be

a constant. It can be interpreted as the projection of the “u”-direction on the D-brane

worldvolume, while XI
u is the projection of the u-direction in the transverse directions.

4 If J is an inner automorphism, i.e. Jki = f jk
iµj , one may shift X1

j = −µj to absorb J in X1. This is

consistent with our comment above that J can be redefined away if it corresponds to an inner automorphism.
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On the fermionic parts, after setting the VEV to Ψu = 0, they become

LΨ =
i

2
〈Ψ̄,ΓµD̂µΨ〉, (4.73)

and

Lint =
n
∑

I′=2

iλ1

2
〈Ψ̄i,ΓI′ [X

I′

j ,Ψk]〉 +
i

2
Ψ̄iΓ1D̂uΨi. (4.74)

In the gauge X1
i = 0, the second term becomes the mass term for the fermions with their

masses given by the matrix λ1λ2J .

To summarize, in the gauge X1 = 0,

L = LX + LΨ + Lint + LA, (4.75)

LX =

n
∑

I′,J ′=2

−
1

2
(D̂µXI′

i )2 +
λ2

1λ
2
2

2
XI′

i (J2)ijX
I′
j , (4.76)

LΨ =
n
∑

I′=2

i

2
Ψ̄ΓµD̂µΨ −

λ1λ2

2
Ψ̄i(iΓ1)J

ijΨj , (4.77)

Lint =

n
∑

I′,J ′=2

λ2
1

4
[XI′ ,XJ ′

]2 +
iλ1

2
〈Ψ̄,ΓI′ [X

I′ ,Ψ]〉, (4.78)

LA = −
1

4λ2
1

F 2
µν −

λ2
2

2
(J2)ijA

′
µiA

′
µj , (4.79)

which is of the form of a massive super Yang-Mills theory with the mass matrix λ1λ2Jij .

5 Application to toroidal compactification of M/string theories

In this section we first consider an example of the general theory studied in section 4.3. We

consider the Kac-Moody algebra as an example of the Lorentzian extension of a Lie algebra,

and show in section 5.1 that the SYM theory with the gauge symmetry generated by the

Kac-Moody algebra is equivalent to a SYM theory with a finite dimensional gauge group

on a base space of higher dimensions. Finally, to be complete, in section 5.2 we consider

the BLG model with the full 3-algebraic structure to describe M2-branes in flat spacetime

compactified on a d-dimensional (noncommutative) torus with background fields.

5.1 Dp to D(p + 1) via Kac-Moody algebra

Before we go to the general discussion, let us briefly consider a simple case where Lie 3-

algebra is defined as (2.11) where Lie algebra G itself is a Lorentzian Lie algebra. The

simplest example is when G is the affine Lie algebra ĝ,

[u, T a
m] = mT a

m, (5.1)
[

T a
m, T b

n

]

= mvgabδm+n + ifab
cT

c
m+n, (5.2)

[v, u] = [v, T a
m] = 0 , (5.3)
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where a, b, c = 1, . . . ,dim(g), n,m ∈ Z and gab is the Killing form of a compact Lie algebra

g. This algebra has an invariant metric

〈T a
m, T b

n〉 = gabδm+n, 〈u, v〉 = 1 . (5.4)

We note that the generator v is the center of Kac-Moody algebra and usually taken as a

quantized c-number. Here we identify it as a nontrivial generator. On the other hand,

the generator u gives the level (or −L0 in the Virasoro algebra). While T a
n has a positive-

definite metric, the generators u, v have a negative-norm generator.5

We follow the method in section 4.3 where we use the super Yang-Mills system on D2

with gauge symmetry ĝ by using the Higgs mechanism for one Lorentzian pair.

In fact, the following analysis can be carried out for any Dp-brane system and provides

a general mechanism of the gauge theory with affine gauge symmetry. What we are going

to show is that the Dp-brane system whose gauge symmetry is ĝ can be identified with

D(p + 1)-brane system with Lie algebra g.

If we start from the BLG model directly, we have a different perspective in which we

will treat more general argument given in the next subsection.

We start from the action

L = −
1

4λ2
〈Fµν , Fµν〉 −

1

2
〈DµXI ,DµXI〉 +

λ2

4
〈[XI ,XJ ], [XI ,XJ ]〉

+
i

2
Ψ̄ΓµDµΨ +

iλ

2
Ψ̄ΓI [X

I ,Ψ] , (5.5)

where XI(x) (I = 1, . . . ,D) are the scalar field and Ψ(x) is the spinor field. Both are in

the adjoint representation of g. The world volume index is given as µ, ν = 0, . . . , p. The

covariant derivative and the field strength are defined (only in this subsection) as

DµΦ := ∂µΦ − i[Aµ,Φ] , Fµν := ∂µAν − ∂νAµ − i[Aµ, Aν ] (5.6)

for Φ = XI ,Ψ. The convention here differs from that in section 2; here Aµ is Hermitian.

We consider the following component expansion,

Aµ = Aµ(a,n)T
a
n + Bµv + Cµu, (5.7)

XI = XI
(a,n)T

a
n + XI

uu + XI
v v, (5.8)

Ψ = Ψ(a,n)T
a
n + Ψuu + Ψvv . (5.9)

Various components of the covariant derivative and the field strength are given as

(DµXI)(an) = ∂µXI
an + f bc

a

∑

m

Aµ(b,m)X
I
(c,n−m) − nCµXI

(a,n)

+inAµ(a,n)X
I
u

=: (D̂µXI)(a,n) + inAµ(a,n)X
I
u, (5.10)

(DµXI)u = ∂µXI
u, (5.11)

5We note that a different type of Lie 3-algebra based on Kac-Moody symmetry was obtained in [28].
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(DµXI)v = ∂µXI
v +

∑

m

imgabAµ(a,m)X
I
(b,−m), (5.12)

(Fµν)(a,n) = ∂µAν(a,n) − ∂νAµ(a,n) + f bc
a

∑

m

Aµ(b,m)Aν(c,n−m), (5.13)

(Fµν)u = ∂µCν − ∂νCµ, (5.14)

(Fµν)v = ∂µBν − ∂νBµ +
∑

m

imgabAµ(a,m)Aν(b,−m) , (5.15)

and similar expressions for DµΨ. From the kinetic part for u, v components, the equations

of motion for Xu, Ψu and Cµ are free,

∂µ∂µXI
u = Γµ∂µΨu = ∂µ(∂µCν − ∂νCµ) = 0 . (5.16)

We fix their values as

XI
u = const. =: λ′δID, Ψu = 0, ∂µCν − ∂νCµ = 0 . (5.17)

For the first two relations, we need to use the method [18, 19] as reviewed in section 2. We

need to introduce the extra gauge symmetry as commented in the paragraph after (4.71)

to derive the last one. For general world volume dimensions, the additional action is

Sadditional = −
1

4λ2
Dµν(∂µCν − ∂νCµ) , (5.18)

where Dµν is a new field. It gives rise to a new gauge symmetry,

δDµν = ∂µΞν − ∂νΞµ, δBµ = −Ξµ (5.19)

by which we can gauge fix Bµ = 0. The equation of motion by the variation of Dµν gives

the flatness condition of Cµ.

Since the gauge field Cµ is essentially flat, we can ignore it for simplicity (namely set

Cµ = 0). After this, the ghost fields Cµ, Bµ,XI
u,XI

v ,Ψu,Ψv disappear from the action, and

the system is unitary.

We identify the infinite components of the scalar, spinor and gauge fields as fields in

p + 2 dimensions,

X̃I
a(x, y) =

∑

m

XI
(a,n)(x)e−iny/R , Ψ̃a(x, y) =

∑

m

Ψ(a,n)(x)e−iny/R ,

Ãµa(x, y) =
∑

m

Aµ(a,n)(x)e−iny/R, (5.20)

where an extra coordinate y is introduced to parametrize S1 with the radius R. We also

rename

X̃D
a (x, y) →

1

λ
Ãya(x, y) . (5.21)

The kinetic term of the scalar field XI can be rewritten as

−
1

2

∫

dy

2πR

[

D−1
∑

I=1

(∂µX̃I
a − f bc

aÃµbX̃
I
c )2 +

1

λ2
F̃ 2

µya

]

, (5.22)
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where

F̃µya := ∂µÃya − ∂yÃµa + f bc
aÃµbÃyc . (5.23)

Here the second term can be produced properly if we identify

R = 1/λλ′ . (5.24)

This relation seems strange if we compare with (2.20). It can be fixed by applying the

T-duality transformation [29].

The second term in (5.22), when combined with the kinetic term for gauge fields,

properly reproduces the kinetic term for p + 2 dimensional world volume. The Kaluza-

Klein mass from the compactification radius (5.24) is nλλ′ which is consistent with the

result (4.31).

Similarly, we can rewrite the commutator term,

λ2

4

D
∑

I,J=1

〈[XI ,XJ ], [XI ,XJ ]〉 =
λ2

4

D−1
∑

I,J=1

∫

dy

2πR
〈[X̃I , X̃J ], [X̃I , X̃J ]〉

−
1

2

D−1
∑

I=1

∫

dy

2πR
(DyX̃

I)2. (5.25)

Here again the second term can be combined with the kinetic term for XI to give the

kinetic energy on p + 2 dimensional world volume.

Finally, we can rewrite the interaction term,

iλ

2

D
∑

I=1

Ψ̄ΓI [X
I ,Ψ] =

iλ

2

D−1
∑

I=1

∫

dy

2πR
¯̃ΨΓI [X̃

I , Ψ̃] +
i

2

∫

dy

2πR
¯̃ΨΓyDyΨ̃. (5.26)

Here, this time, the second term can be combined with the kinetic term for Ψ.6 In the

end, the Lagrangian thus obtained is the same as the original Lagrangian (5.5) except that

we change the dimension parameter D → D − 1 and p → p + 1 and the gauge symmetry

G = ĝ → g:

L = LA + LX + LΨ + Lpot + Lint, (5.27)

LA = −
1

4λ2

∫

dy

2πR
(F̃ 2

µν + 2F̃ 2
µy), (5.28)

LX = −
1

2

∫

dy

2πR

D−1
∑

I=1

[

(DµX̃I)2 + (DyX̃
I)2
]

, (5.29)

LΨ =
i

2

∫

dy

2πR
¯̃Ψ(ΓµDµ + ΓyDy)Ψ̃, (5.30)

6We should notice the definition of Γµ and ΓI here. We see from the kinetic term of Ψ in the

Lagrangian (5.5) that Γµ satisfies {Γµ, Γν} = diag. (+ − · · · −). On the other hand, ΓI should satisfy

{ΓI , ΓJ} = δIJ as usual. So we choose ΓD = −iΓy and obtain (5.26).
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Lpot =
λ2

4

D−1
∑

I,J=1

∫

dy

2πR
〈[X̃I , X̃J ], [X̃I , X̃J ]〉, (5.31)

Lint =
iλ

2

D−1
∑

I=1

∫

dy

2πR
¯̃ΨΓI [X̃

I , Ψ̃]. (5.32)

5.2 M2 to Dp via 3-algebra

Here we consider essentially the same physical system as the previous subsection, namely

the compactification of D2-branes on torus, but we start from the BLG model for multiple

M2-branes corresponding to an example of the Lie 3-algebra summarized in (3.70)–(3.79).

The formulation here will be more general than above as we will turn on noncommutativity

and a gauge field background.

We start by defining a Lie algebra g0 with generators T i
~m, structure constants

f (i~l)(j ~m)(k~n) = f ijk
~l~m

δ
~l+~m+~n
~0

, (5.33)

and metric

g(i~m)(j~n) = gij
~mδ ~m+~n

~0
. (5.34)

Here ~m is a d-dimensional vector of integers.

The simplest example of g0 has

T i
~m = T iei~m·~x, (5.35)

where T i is the generator for U(N) and ~x is the coordinate on a d-dimensional torus. More

generally, one can consider a twisted bundle on a noncommutative torus T d
θ . In this case

T i
~m = T iZm1

1 · · ·Zmd
d , (5.36)

where T i denotes a generator of the U(N) gauge group, and Zi are noncommutative alge-

braic elements satisfying

ZiZj = eiθ′ijZjZi. (5.37)

The parameter θ′ is in general not the same as the noncommutative parameter θ of the

noncommutative torus T d
θ , and it depends on the rank of the gauge group and its twisting.

Zi maps a section of the twisted bundle to another section. For the trivial bundle, Zi = eixi

and (5.36) reduces to (5.35). The case of d = 2 was studied in [26, 27]. It is straightforward

to generalize it to arbitrary dimensions.

Since the structure constant (5.33) of g0 has the property

f (i~l)(j ~m)(k~n) ∝ δ
~l+~m+~n
~0

. (5.38)

g0 has derivations

J
(i~m)(j~n)
0a = maδ

(i~m)(j~n). (5.39)
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Now we consider the 3-algebra with the underlying Lie algebra g = g0 and Ia6=0’s

empty. We take Jab = 0 if a, b 6= 0, and J0a given by (5.39). It follows that the first 3

terms in (3.62) vanish, hence

K
(i~m)
abc = δi

0δ
~m
~0

Cabc, (5.40)

assuming that T 0 is the identity of U(N), so that T (0~0) is the identity of g0. In the following

we choose

Ki~m
0ab = δi

0δ
~m
~0

Cab, (5.41)

Ki~m
abc = 0, otherwise. (5.42)

It will be shown below that the constants Cab corresponds to a nontrivial gauge field

background.

The 3-algebra is defined by the 3-brackets

[u0, ua, ub] = CabT
0
~0

+ L0abcv
c, (5.43)

[u0, ua, T
i
~m] = maT

i
~m − δi

0δ
~0
~mCabv

b, (5.44)

[u0, T
i
~m, T j

~n] = mag
ij
~mδ

~0
~m+~nva + f ijk

~m~nT k
~m+~n, (5.45)

[T i
~l
, T j

~m, T k
~n ] = −f ijk

~l~m
δ
~0
~l+~m+~n

v0, (5.46)

where a, b, c = 0, 1, 2, . . . , d and i, j, k = 1, 2, . . . , N . (Note that we have changed the range

of indices a, b, c from the convention used above.)

This 3-algebra is actually precisely the Lorentzian algebra discovered in [14, 16, 24]

constructed from the (multiple) loop algebra defined by

[ua, ub] = CabT
0
~0

+ L0abcv
c, (5.47)

[ua, T
i
~m] = maT

i
~m − Ki

0abv
b, (5.48)

[T i
~m, T j

~n] = mag
ijδ

~0
~m+~nva + f ij

~m~nkT
k
~m+~n, (5.49)

[va, T i
~m] = 0, (5.50)

where (a, b = 1, . . . , d). In the sense that one can construct the 3-algebra (5.43)–(5.46) from

a Lie algebra by adjoining two elements (u0, v
0), this 3-algebra is not a good representative

of the new class of 3-algebras defined in (3.70)–(3.79). However, it is still a good example

because it demonstrates the roles played by the new parameters Jab and Kabc, which encode

the information about derivatives of the Lie algebra g, which is a subalgebra of the loop

algebra (5.47)–(5.50).

It follows from the result of [16] that the BLG model with the Lie 3-algebra (5.43)–

(5.46) is exactly equivalent to the SYM theory defined with the Lie algebra (5.47)–(5.50).

In section 5.1, we showed explicitly that for d = 1 the resulting SYM theory is the low

energy theory for D3-branes. Now we briefly sketch the derivation for generic d to obtain

the SYM theory for D(d + 2)-branes.
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Expanding the fields in the BLG model, we have

XI =

d
∑

a=0

XI
aua + X̂I(Z) + Y I

a va, (5.51)

Ψ =
d
∑

a=0

Ψaua + Ψ̂(Z) + Φava, (5.52)

Aµ =
1

2

d
∑

a,b=0

Aµabua ∧ ub +
d
∑

a=0

ua ∧ Âµa(Z) +
d
∑

a=0

va ∧ Â′
µa(Z)

+
1

2

d
∑

a,b=0

A′
µabv

a ∧ vb +
1

2

∑

ij

Aµ(i~m)(j~n)T
i
~m ∧ T j

~n, (5.53)

where we have used (5.36) and the notation

X̂I(Z) :=
∑

~m

XI
(i~m)T

iZm1 · · ·Zmd , (5.54)

Ψ̂(Z) :=
∑

~m

Ψ(i~m)T
iZm1 · · ·Zmd , (5.55)

Âµa(Z) :=
∑

~m

Aµa(i~m)T
iZm1 · · ·Zmd , (5.56)

Â′
µa(Z) :=

∑

~m

A′
µa(i~m)T

iZm1 · · ·Zmd , (5.57)

and XI
i (Z), Ψi(Z) Âµa(Z) and Â′

µa(Z) are sections of a twisted bundle on T d
θ .

As we have done it many times already, we fix the coefficients of ua as

XI
a = constant, Ψa = 0, Aµab = 0, (a, b = 0, 1, . . . , d, ) (5.58)

and the coefficients of va can be ignored. Here Aµab is chosen to be zero for simplicity. If

Aµab’s are nonzero, it corresponds to turning on a constant background field strength with

nonvanishing components of FµI .

To proceed, we first define covariant derivatives Da on the noncommutative torus, such

that

[Da, Z
m1

1 · · ·Zmd
d ] = maZ

m1

1 · · ·Zmd
d , (5.59)

[Da,Db] = Cab, (5.60)

where Cab is the constant background field strength that determines the twisting of the

bundle on T d
θ .

The rest of the derivation is essentially the same as section 5.1. Finally, after integrating

out the field Ã, the BL Lagrangian turns into that of a SYM theory

L = −
1

4

9
∑

A,B=0

〈FAB , FAB〉 +
i

2
〈Ψ̄,ΓAD̂AΨ〉, (5.61)
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where

Fµν := [D̂µ, D̂ν ], (5.62)

FµI := [D̂µ, D̂I ], (5.63)

FIJ := [D̂I , D̂J ] + CIJ , (5.64)

and

D̂µ := ∂µ − Âµ0(Z), (5.65)

D̂I := XI
aDa − X̂I(Z), (5.66)

CIJ := XI
aXJ

b Cab. (5.67)

Roughly speaking, only d of the D̂I ’s are covariant derivatives and the rest 7− d are scalar

fields. To turn on the background field CµI , we can assign nonzero values to Aµ0a and Aµab.

5.3 M2 to M5 revisited

As we discussed in section 3.2, there is an interesting Lorentzian 3-algebra associated with

the Nambu-Poisson bracket on T 3 defined through the structure constants (3.27), (3.31)–

(3.33). We claim that the BLG model associated with this 3-algebra is exactly the descrip-

tion of M5-brane in [8, 9, 16] while it was not explicitly understood. We would like to give

a brief sketch on this point.

The key observation to define 6-dimensional fields on M5 from BLG model is to use

the “mode expansion” such as

XI
i (x)T i → XI

i (x)χi(y) =: XI(x, y). (5.68)

If we add three pairs of Lorentzian generators (ua, va), we have to redefine the above

expansion as

X̃I(x) = XI
i (x)χi(y) + XI

a(x)ua + XI
a(x)va . (5.69)

Here, the fields XI
a(x) and XI

a(x)va are ghost fields. As we have seen reapeatedly, one

may put

XI
a(x) = 0, XI

a = const. (5.70)

By change of basis in the transverse direction R8, one may put

X̃a(x, y) = Xa
i (x)χi(y) + λau

a (a = 1, 2, 3) ,

X̃I(x, y) = XI
i (x)χi(y) (I = 4, . . . , 8) . (5.71)

where λa are constant numbers. This is exactly the assignment by which we can reproduce

the M5-brane action from BLG model (for example, eq. (30) in [8]). Various kinetic terms

on M5 world volume such as (∂yaXi)2 (i = 4, . . . , 8) are generated from the extra term in

X̃a. All the other analysis in [8, 9] remain the same and we have the same conclusion.
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We note that if we do not include these extra terms, the BLG model associated with

this 3-algebra would contain infinite number of massless mode even when we consider the

compactification on T 3. On the other hand, if we use the M5 action in [8, 9] on T 3, we

can produce the Kaluza-Klein mass correctly since we have the kinetic term as mentioned.

Therefore, the generation of Kaluza-Klein mass on M5 can be again reduced to the inclusion

of pairs of Lorentzian norm generators in the Nambu-Poisson 3-algebra.

6 Conclusion and discussion

In this paper, we considered some generalizations of the Lorentzian Lie 3-algebras and

studied the BLG models based on the symmetry. In the examples we studied, we naturally

obtain the string/M theory compactifiction on the torus. The mass term generated by the

Higgs fields can be identified with the Kaluza-Klein mass in the toroidal compactification.

The dimension of the torus can be identified with the number of negative-norm generators

of the 3-algebra. We also argued that one may use our technique to consider the D-brane

system where its gauge symmetry is described by infinite dimensional loop algebras.

We do not believe that our examples exhaust all possible 3-algebras which are relevant

to M/string theories. For example, we did not fully examine the infinite dimensional

case with F ijkl 6= 0. Another interesting possibility is the description of more general

background, such as orbifolds, through different choices of Lorentzian Lie (3-)algebras.
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