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ABSTRACT: We construct a class of Lie 3-algebras with an arbitrary number of pairs of
generators with Lorentzian signature metric. Some examples are given and corresponding
BLG models are studied. We show that such a system in general describes supersymmetric
massive vector multiplets after the ghost fields are Higgsed. Simple systems with nontrivial
interaction are realized by infinite dimensional Lie 3-algebras associated with the loop
algebras. The massive fields are then naturally identified with the Kaluza-Klein modes by
the toroidal compactification triggered by the ghost fields. For example, Dp-brane with an
(infinite dimensional) affine Lie algebra symmetry § can be identified with D(p + 1)-brane
with gauge symmetry g.
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1 Introduction

Recently, Bagger, Lambert [1-3] and Gustavsson [4] constructed a three-dimensional su-
percomformal field theory as a multiple-M2-brane world-volume theory in M-theory. This
BLG model is characteristic of the novel feature that the gauge symmetry is based on a Lie
3-algebra, and thus various studies on this algebra have been undertaken [5, 6]. For the BLG
model to work, the Lie 3-algebra needs to satisfy the fundamental identity (a generalization
of Jabobi identity). If the positivity of the invariant metric is also imposed to avoid ghosts,
the only non-trivial example of finite dimensional 3-algebra is A4 [7] and its direct sums.

If we relax the condition on dimensionality, Nambu-Poisson brackets give realizations
of infinite dimensional Lie 3-algebra [8, 9]. The BLG model with this algebra realizes
the world-volume theory of Mb5-branes in the C-field background on a 3-manifold where
Nambu-Poisson bracket can be defined.

Similarly, when the requirement of a positive definite metric is given up, we also
found physically meaningful models. Among the various examples, a Lie 3-algebra with a



negative-norm generator was constructed and was referred to as Lorentzian Lie 3-algebra.!
The corresponding BLG model has ghosts, but they can be completely decoupled. It was
realized that the inclusion of the Lorentzian generators is associated with the compactifica-
tion of a spatial dimension, and this Lorentzian model reproduces the multiple- D2-brane
world-volume theory in type I[ A string theory.

In this paper, we study some generalizations of such Lorentzian 3-algebras for which
ghost fields can still be decoupled. Such algebras have been considered extensively by de
Medeiros et. al [11] when the number of Lorentzian pairs is two. Here we present more
straightforward and explicit analysis in terms of the structure constants. We find it fruitful
to consider generalizations with more Lorentzian pairs, as it gives us insight about how
to circumvent the strict constraints from fundamental identities. We also study the BLG
model associated with such 3-algebras. Our construction includes an interesting example
which contains the massive Kaluza-Klein towers associated with additional compactified
dimensions. This seems to be consistent with our expectation that adding Lorentzian pairs
corresponds to additional compactifications. A typical feature of the generalized Lorentzian
3-algebra is indeed that we have a massive spectrum with A/ = 8 SUSY in the BLG model,
and we need an infinite dimensional realization to have nontrivial interacting models.

Our observation of the relation between the D-brane system with Lorentzian gauge
symmetry and higher dimensional branes is not restricted to the context of BLG models.
In fact, most of the examples considered here can be directly analyzed in the context
of a Yang-Mills system whose gauge symmetry has Lorentzian signiture. It was known
that in some brane configurations (see for example [12]) we have to treat such an infinite
dimensional gauge symmetry on D-branes. It was generally expected that the appearance
of infinite dimensional symmetry should be related to closed string modes in a compactified
space. However, the explicit analysis was not made because the Higgs mechanism which
implement Kaluza-Klein mass was not known. Similar infinite dimensional symmetries
were also studied in various contexts [13] in string/M theory and we hope that our method
gives a simple direct interpretation to such systems.

This paper is organized as follows. In section 2, we first review the Lorentzian BLG
model [14-16]. We describe the typical structure of the 3-algebra for which the removal of
the ghost field [18, 19] is possible. In section 3, we give a detailed study of the constraint
from the fundamental identity. Such study for two Lorentzian pairs was made in [11] but
we generalize their result by considering an arbitrary number of Lorentzian pairs. We
use a strategy to analyze the constraint for the structure constants directly. Although
we do not claim that we could classify all possible algebras, we find a class of interesting
3-algebras through such analysis, with potential applications to string/M theory. We note
that the many 3-algebras which we found can be realized by Lorentzian extension [14-16]
of Lorentzian Lie algebras. It enables us to analyze some of the Lorentzian BLG models
through gauge theories with Lorentzian Lie algebra symmetry. As we noted, such D-
brane system is by itself an interesting object to study. In section 4, we derive the BLG

!The Lie 3-algebra with zero-norm generators was also studied [10] to construct M2-brane model which
produces the correct entropy O(N 3/ 2) in large N limit. Tt was suggested that we need 3-algebra instead of
Lie algebra to have such scaling.



model associated with the simplest Lie 3-algebra with more than one Lorentzian pairs.
We demonstrate that such system typically has massive vector fields where each gauge
field absorbs two degrees of freedom from scalar fields. In section 5, we construct the
BLG model (or super Yang-Mills theory) based on loop algebras which are the simplest
nontrivial examples of generalized Lorentzian Lie (3-)algebra. Finally we comment that
the description of Mb5-brane [8, 9] can be also regarded as the typical example of the
compactification through the Lorentzian 3-algebra.

2 Lorentzian BLG model

In this section, we review the basic features of the Lorentzian BLG model [14-16]. The
original BLG action for multiple M2-branes is

S = Tg/d?’xL =T /d% (Lx + Ly + Lint + Lpot + Lcs), (2.1)
Lx = —%(DMXI,D“XI>, (2.2)
Ly = L(0,7"D,¥), (2.3)
L = £, Ty [X1, X7, ), (2.4)
Lpot = —%([XI,XJ,XK],[XI,XJ,XKD, (2.5)
Les = %fABCDAAB ANdAcp + %fCDAGfEFGBAAB NAcp N AgF, (2.6)

where T5 is the M2-brane tension. The indices p = 0, 1, 2 specify the longitudinal directions
of M2-branes; I,.J, K = 3,...,10 the transverse directions. The indices A, B, C, ... denote
components of Lie 3-algebra generators. The covariant derivative is

(D, ®(x)a = 0,84 — fPP 1A cp(2)Pp (2.7)

for ® = X1, 0.
In order to define the BLG model action, the Lie 3-bracket

T4, T8, TC] = fABC ;7D (2.8)
for a Lie 3-algebra must satisfy the following constraints:

e Tri-linearity

Skew symmetry

Fundamental identity

fABCFfFDE'G + fABDFfCFEG + fABE'FfCDFG _ fCDE'FfABFG (29)

Invariant metric (T4, TB) = hAB:



The simplest Lorentzian Lie 3-algebra was defined as follows. Let G be a given Lie
algebra. We denote its generators as T, structure constants f*,, and Killing form h%.
Now we define a Lie 3-algebra whose generators are T4 = {u, v, T*} such that

[v, T4, TP
(u,v)

Oa [ua TZ" TJ] = fzjk;Tka [Tza T]a Tk] = _hklfijlv’
1, (T, T7) = hid, otherwise = 0. (2.11)

This 3-algebra satisfies the fundamental identities and the requirement of invariant metric,
so we can use it as the gauge symmetry of BLG model. Since this algebra has a negative-
norm generator u — av (for a > 0), BLG model has a ghost field. The mode expansion of
the Langrangian becomes (up to total derivatives)

L= <—%(DMXI —ALXD)? 4 %E/WDM\IJ + %@UWA;@
LBy XIRY ) 4 (XEPRT R - (xR, X))
+%€MVAFMVA/>\> L, (2.12)
Lon = = (XLAKT + 0, XD(OXD - JH.I0, %, ). (213)
where
Dud = 0y — [Ay &), o = 00dy — 0,4, — [Ay, ] (2.14)

for ® = X!, W. As we see, fortunately, the ghost fields decouple, that is, they act only as
Langrange multipliers. Their equations of motions are

X} =0, I*9,¥, =0, (2.15)
and we can set

xl=M:=x{,, Vvl=0 (2.16)

u u

without breaking any supersymmetry or gauge symmetry [16]. This is motivated by the
Higgs mechanism in BLG model first considered in [17]. The Lagrangian becomes, after
integration over A’,

1, 5 = o A2

N N I = A 1 -
L=—5(D, X"+ %\IIF“DH\II + SRR+ %\IIFI[XI,\II] ——F2 (217)

4 2=
where I, J =3,...,9. This can be regarded as D2-branes theory in type Il A string theory
which is the compactification of M-theory on a circle.

The origin of the decoupling of the ghost fields comes from the specific way that
Lorentzian generators appear in the 3-algebra. Namely, the generator v is the center of
the 3-algebra and u is not produced in any 3-commutators. This property ensures that the
system is invariant under the translation of the scalar fields X!. The decoupling of the



ghost fields can be made more rigorous [18, 19] by gauging this global symmetry. Namely
by adding extra gauge fields C),, x through

Lnew = —Vux + 0" XC) (2.18)
we have an extra gauge symmetry:
5Xy =N, sCi=0,A", 0V, =m,  ox=il"Oum. (2.19)

It enable us to put X! = ¥, = 0. The equations of motion by variation of Cﬁ, X give the
assignment (2.16) correctly.

Another important feature of the Lorentzian BLG model is that the assignment of
VEV to X! triggers the compactification of 11 dimensional M-theory to 10 dimensional
type I A theory. The compactification radius of M-direction is given by [16]

A=27R. (2.20)

For various aspects of the Lorentzian model, see for example [20].

3 Analysis of Lie 3-algebra with two or more negative-norm generators

In the following, we consider some generalizations of the Lorentzian 3-algebra invented
in [14-16] by adding pairs of generators with Lorentzian metric. Positive-norm generators
are denoted as e (i = 1,...,N), and Lorentzian pairs as us, v, (a,b = 1,...,M). We
assume that the invariant metric for them is given by the following simple form

(e, el)y =6 | (ug,vp) = Oap - (3.1)
In terms of the four-tensor defined by
fABCD — fABCEhED, (32)

the invariance of the metric and the skew symmetry of the structure constant imply that
the condition that this 4-tensor is anti-symmetric with respect to all indices.

We also assume that the generators v, are in the center of the 3-algebra. This condition
is necessary to apply the Higgs mechanism to get rid of the ghost fields as we have reviewed.
In terms of the 4-tensor this condition is written as

fvaBCD —0 (33)

for arbitrary B, C, D. Therefore the index in the 4-tensor is limited to e’ and u,. For the
simplicity of the notation, we write ¢ for ¢’ and a for u, for indices of the 4-tensor, for
example f1% .= feiej“““b and so on.

We note that there is some freedom in the choice of basis when keeping the metric (3.1)
and the form of 4-tensor (3.3) invariant:

& = O0je! + Piv®, i = Qfe' + Rgu® + Sp’, 7% = ((R) ™o’ (3.4)



where
O'0=1, Q=-RP'O, R 'S+ (R 1S)!=-PP. (3.5)

The matrices O and R describe the usual rotations of the basis. The matrix P describes
the mixing of the Lorentzian generators u,, v, with e'.
We introduce some notation for the 4-tensor,

f’ljk?l Fz]kl faz]k f’ljk? fabz] JZL{N fabcz _ abc? fabcd _ Labcd- (36)

We rewrite the fundamental identity in terms of this notation below in section 3.1.
There are a few comments which can be made without detailed analysis:

e For lower M (i.e. smaller number of Lorentzian pairs (ug,v,)), some components of

the structure constants (3.6) vanish identically due to the anti-symmetry of indices.
= Lgpeq = 0. For M = 2, one
may put J; g , nonvanishing but we have to keep Ki eve = Labea = 0 and so on.

For example, for M = 1, we need to put JJ = ZLbc

e In the fundamental identity (3.11)—(3.24), there is no constraint on Lgpeq. It comes
from the fact that the contraction with respect to Lorentzian indices automatically
vanishes due to the restriction of the structure constant (3.3). So it can take arbitrary
value for M > 4. This term, however, is not physically relevant in BLG model, since
they appear only in the interaction terms of the ghost fields which will be erased after
Higgs mechanism.

e A constraint for F* (3.11) is identical to the fundamental identity of a 3-algebra
with the structure constant F%* . So if we assume positive definite metric for e, it
automatically implies that F/*! is proportional to €ijkl or its direct sums [21].

e By a change of basis (3.4), various components of the structure constants (3.6) mix.
For example, if we put O = R = 1 for simplicity and keep only the matrix P nontrivial
(which implies S = —%PtP), the structure constant in terms of the new basis {é,
a®, v} are given as

Fijkl — Fijkl

f]k:l f]k:l +P1F1]kl

J = J9 + Pk — pf ik 4 prakipkpl
K(Zzbc abc+Pj‘]c_PIf‘]ciLJ(‘:+Pg‘];{w

FEMPERL — PSR+ FRPER + RIFERUEL (310

We will find that many solutions of the fundamental identities can indeed be iden-
tified with well-known 3-algebra after such redefinition of basis. In this sense, the
classification of the Lorentzian 3-algebra has a character of cohomology, namely only
solutions which can not reduce to known examples after all changes of basis give rise
to physically new system.



In the following, we give a somewhat technical analysis of the fundamental iden-
tity (2.9). Solutions which we found are summarized in section 3.5. We do not claim
that our analysis exhausts all the possible solutions. But as we will see in the later sec-
tions, they play an important physical role in string/M theory compactification.

3.1 Fundamental identities

We rewrite the fundamental identity (2.9) in the notation (3.6):

pidkn prlmp  pijin pknmp | pijmn pkinp - pklmn pijnp 0,
FIR fyitm g et gl g pam i gk gn = o,
FaMETH oI o folpabn — finm Ik =,

™+ L )+ 1 + PR = o,

S A e A e

(o FI9F 4 T FE 4 T ™) = FORT, = 0,
FOR g — PO — i 7 ek = o,
(i f9% = o 0 (R Tk — fikm gty = o,
— Ko S0+ KLy f17 + T TS — T Y = 0,
R T A S R
(ST + T2 = JIT) — KLy = 0,

o Kbge = T K g + o Ko+ T K e = 0,

FI Ky — fgleclwd + Ky — ;leébc =0,

K Kiep — Koge Kb + Koop Kige — Kl Kige = 0.

a

3.2 Lorentzian extension of Nambu bracket

Let us examine the case with F¥* =£ 0 first. As we already mentioned, eq. (3.11) implies
that FUk €;jk and its direct sum. So without losing generality, one may assume N = 4
and Fkl — €;jk1 for the terms which include nontrivial contraction with Figkl,

Suppose féjk =% 0 for some a. Then by the skew-symmetry of indices they can be
written as fi/F = €ijr P for some P?. This expression actually solves (3.12), (3.13).
However, this form of fé] F s exactly the same as the right hand side of (3.8). It implies
that such féj ¥ can be set to zero by a redefinition of basis.

Therefore, at least when the 3-algebra is finite dimensional, it is impossible to construct
Lorentzian algebra with nontrivial F* = 0. The situation is totally different if the 3-
algebra is infinite dimensional [8, 9] which is related to the description of M5-brane (for the
various aspects of M5-brane in BLG context, see also [22] for example). The realization of
the three-algebra was given as follows. We take N as a compact three dimensional manifold
where Nambu-Poisson bracket [23],

{f17f27f3} = Zfabc aaflabeacf?) (325)

a,b,c



is well defined. Namely N is covered by the local coordinate patches where the coordinate
transformation between the two patches keeps the 3-bracket (3.25) invariant. The simplest
examples are T3 and S [8, 10]. If we take x'(y) as the basis of H: the Hilbert space
which consists of functions which are globaly well-defined on N, and one can choose a
basis mutually orthonormal with respect to the inner product,

XXy = /Nd3y X )X (y) = 67 (3.26)
It is known that the structure constant
FM = ({x’}xj,x’“} ') (3.27)

satisfies the fundamental identity (3.11).

We are going to show that it is possible to extend this 3-algebra with the additional
generators with the Lorentzian signature. For simplicity, we consider the case N' = T3.
The Hilbert space H is spanned by the periodic functions on T3. If we write the flat
coordinates on T3 as y® (a = 1,2,3), where the periodicity is imposed as y* ~ y® +p?, and
p® € Z. The basis of H is then given by

y) = 2™V’ j e 73 (3.28)

=<
3t
—

with the invariant metric and the structure constant:

i ﬁz>

(X" x 6(7i + 1), (3.29)
Fﬁﬂlﬁﬁ — (2wi)3eabcnamblc5(ﬁ -+ f_{_ﬁ) . (330)

The idea to extend the 3-algebra is to introduce the functions which are not well-
defined on 72 but the Nambu bracket among H and these generators remains in H. For
T3, such generators are given by the functions u, = y*. The fundamental identity for the
Nambu-bracket comes from the definition of derivative and it does not matter whether or
not the functions in the bracket is well-defined globally. Therefore even if we include extra
generators the analog of fundamental identity holds. More explicitly we define the extra
structure constants as

i ({U“, X", xm} D) = (2mi)2eapen®m©S (7 + 1 + 1), (3.31)
= ({ut X ™) = (2mi)eanen©O(7 + 1), (3.32)
gbc = <{ua, ub’ uc} aXﬁ> = Eabc(s(ﬁ)- (333)

It is not difficult to demonstrate explicitly that they satisfy all the fundamental identi-
ties (3.11)—(3.24).

We have to be careful in the treatment of the new generators. For example, the inner
product (3.26) is not well-defined if the function is not globally well-defined on A/. The fact
that the structure constants (3.30)—(3.33) satisfies the fundamental identities (3.11)—(3.24)



implies that we can define the inner product abstractly as (3.1). Namely we introduce extra
generators v, (a = 1,2,3) and define

—

(tasv5) = by (uay X") = (v, X") = (Uas up) = (va,vp) =0 (3.34)

while keeping (3.29).

We also need to be careful in the definition of the three-bracket itself. The naive
Nambu bracket needs to be modified to make the structure constant FABCP totally anti-
symmetric in all four indices. This condition is broken in the original Nambu bracket after
the introduction of the extra generators u®. We have to come back to our original defini-
tion of 3-algebra where this symmetry is manifest. This implies the following redefinition
of the 3-algebra:

[Xﬁ,xm,xf :Fﬁrﬁlﬁﬂxﬁ_ Aimlya (3.35)
[ua,xﬁ,xm_ — Il 4 b, (3.36)
{uaaubaxﬁ_ = Jop X" = Koy, (3.37)
[u“,ub,uc_ = Koperi X" (3.38)

This 3-algebra may be regarded as the “central extension” of the Nambu-Poisson bracket.
The additional factors which are proportional to v® on the right hand side is necessary to
make the metric invariant. One might worry if the fundamental identity may be violated
by the redefinition of the algebra. In this example, fortunately this turns out not to be
true. So we have a consistent 3-algebra with Lorentzian signiture. It may be useful to
repeat our emphasis that, although u® was originally defined through ill-defined function
y®, we have to neglect this fact to define the metric and the 3-algebra.

While the 3-algebra (3.35)—(3.38) is new, we will see later in section 5.3 that the BLG
model based on it turns out to be the same as the M5 models defined in [8, 9, 16] although it
was not noticed explicitly. A glimpse of this fact appeared in §7 in [16] where a subalgebra
of (3.35)—(3.38) appeared and the relation with the Lorentzian BLG model and M5 model
was discussed. We will give more comments on this issue later in section 5.3.

It is straightforward to obtain similar Lorentzian extensions of Nambu-Poisson type
Lie 3-algebras defined on different manifolds N such as S® and S? x S'. So far, the only
nontrivial Lie 3-algebra with positive definite metric are A4 and the Nambu-Poisson type
3-algebras. The examples we consider here would exhaust the Lorentzian extensions which
can be obtained from them.

3.3 Constraints from the fundamental identities for F7k =0
In the following, we restrict ourselves to the case F/* = 0. The fundamental identi-

ties (3.11)—(3.24) are now simplified to be the following:

R o = g, (3.39)

fam gt = o, (3.40)



fugm pmkl 4 chim mjl+fjkm mil _ o (3.41)
f]k)l =0, (3.42)

f’l]kal _ 07 (343)

lebfl]k + Jb fa ll — 0, (344)

2K I = ]~ T 15

FI* K g = 3T, 70, (3.46)

3Klb(cJ”) = K, Jfl{), (3.47)

J;](ngde) =0, (348)

f(Zikacd) — 0, (349)

3Klb(che) — Kéde ébf . (3-50)

In the above, we used the notation that all indices in parentheses are fully antisymmetrized.
For instance,

1
Aa(bBcd)e = 6 (AabBcde + Aachbe + Aadece - Aadece - AacBbde - AadBcbe) . (351)

The constraints above are not all independent. We can use (3.41) alone to derive (3.39)
and (3.40) as follows. Taking (3.41) and replacing the indices as (ijk) — (jki) and (ab) —
(ba) and subtracting the derived equation from (3.41), we get (3.40). It is also obvious
that (3.40) and (3.41) implies (3.39).

Similarly, (3.44) can be easily derived from (3.42) and (3.43).

3.4 Solutions

In this subsection, we try to solve the fundamental identities displayed above and find a
class of solutions.

First, a solution for (3.39) is to use a direct sum of Lie algebras g = g1 @ --- @ g,,, We
divide the values of indices into n blocks I = I; U---U I,, and let

FF =g i, (3.52)
where f&j ¥ is defined by
ijk .o
ijk _ Ja 2,7, k€ Iou 3.53
Ja { 0 otherwise. (3:53)

Here f;ik is the structure constant for g, while v is a real number.

Note that the number n does not have to equal M. It is possible to have some of the
sets I, empty. An example has g = g1 and all I,; empty. In this case, for 75 = d7, wi
have f”k = ;{k and f”k =0 for all a # 1.

,10,



If all the other components of the 3-algebra structure constant vanish, one obtains
from (3.52) a set of solutions to the fundamental identity. The BLG model for this 3-
algebra is not new, however. For each range of index, say I,, we have

e e, ef] == qgv®,  [ut el el] = o fiker. (3.54)
a k
By a suitable rotation (3.4) with
v = Z’yaav“, (3.55)
a
we always have
[el, e, ef] = =%, [u/ €l e] = 6 Z flakeh (3.56)
k

Therefore it is reduced to the standard Lorentzian Lie 3-algebra for M = 1 after the
restriction of indices to I,.

In order to obtain something new, we have to allow other coefficients to be nonzero.

The simplest class of solutions can be found when féj ¥ =0 for 1,7,k € I,. In this case,
for this range I,, arbitrary anti-symmetric matrix J% (i,j € I,) solves the constraints
(this case is a special case of solutions in [11]). We will study the BLG model for this
case in section 4. It demonstrates the essential feature that the supersymmetric system
acquires mass proportional to eigenvalues of J. However, since we put féj k= 0, there is
no interaction. In order to have the interacting system, we need nonvanishing féj k

For simplicity, let us assume that there is a suitable basis of generators such that the

solution (3.52) is simplified as

y ik I
fal:]k: {Oa Z?]ak € as (357)

otherwise,

where the indices are divided into n disjoint sets [ = I U---U I,,, and féj ¥ is the structure
constant for a Lie algebra g,.

Starting with (3.57), we can solve all the constraints (3.39)—(3.50) as follows,
while (3.57) already solves (3.39)—(3.41).

Eq. (3.43) is trivial if two of the indices a, b, ¢ are identical. Assuming (3.57), eq. (3.43)
imposes no constraint on Jfl{) if1 € I, ori € I,. In general, if fcijk #£ 0 for ¢ # a and ¢ # b,
then J(% = 0if 7 € I.. Hence we consider the case

JI£0  onlyif ijel, or i,jel (3.58)

Eq. (3.44) is now trivial if all indices a, b, ¢ are different. If two of the indices are the same,
it is equivalent to (3.42).

According to (3.42), J,p is a derivation for both Lie algebras g, and g,. A derivation
D is a map from ¢ to g such that

D([e', ¢’]) = [D(e"),¢’] + [¢', D(e)]. (3.59)

— 11 —



As a result of (3.42), one can define a derivations Dy, by
Dyy(e) = Jel. (3.60)

The simplest case is when .J,; corresponds to an inner automorphism, so

T = N fi k= Mo £y v, (3.61)
where A¥, = 0 unless k € I,. (Note that the indices a,b are not summed over in (3.61).) In
this case Dgp(+) = [(AF, — A% )ey, - ]. It will be more interesting if Dy, instead corresponds

2

to an infinitesimal outer automorphism (an outer derivation).

If all indices a, b, c,d are all different, (3.45) is trivial due to (3.58). If a = d # b #
¢, (3.45) says that the Lie bracket [Jyp, Joc) is an inner automorphism. The solution of (3.45)
is in general given by

Kope == Kébcei - [Daca Dbc] + [Dbaa Dca] + [cha Dab] + Cabc, (362)

where the antisymmetric tensor Cyp. = Céb . is a central element in g. Since all derivations of
a Lie algebra is always a Lie aglebra, the Lie bracket [Dgy, D.q| satisfies the Jacobi identity.
For J, given by an inner automorphism (3.61), K, can be solved from (3.45) to be

e = NAR pik LN AR FIR N AR piR O (3.63)

(Indices a, b, ¢ are not summed over in this equation.) The term AébAlgc fi K corresponds to
the Lie bracket of the two automorphisms generated by A, and A,. on g,. However, the
case of J,, generating an inner automorphism is not interesting because J,;, and K* obe Can
be both set to zero after a change of basis (3.8), (3.9),

el = el — ZAflbvb for i€ I, (3.64)
Ul = ug — Z Al €. (3.65)
b
Therefore, in the following we will focus on the case when .J,;, is an outer automorphism.
When all indices a, b, ¢, d, e are different, (3.47) can be easily satisfied if
e =0 unless iel,UlUl. (3.66)

Together with (3.58), this implies that K¢, (3.62) vanishes unless i € I, U I, U I.
Due to (3.58) and (3.66), eq. (3.47) is trivial if all indices a,b,c,d, e are different. If
e=a, it is
b+ Kiead oy + Kl Tl = 0. (3.67)

One can then check that this follows from (3.62) and the constraint

Dab(cacd) + Dac(cadb) + Dad(cabc) =0 (368)

2We have to keep in mind that the existence of such automorphisms is quite nontrivial. We will come
back to this issue below.
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as a result of the Jacobi identity of the Lie bracket of D,;’s. The same discussion applies
o (3.46), (3.48), (3.49) and (3.50).

Before closing this subsection, let us comment on infinitesimal outer automorphisms.
For finite dimensional Lie algebra, we have two examples. The first example is when
the Lie algebra is Abelian, and any nontrivial linear map of the generators is an outer
automorphism. The 2nd example is when the Lie algebra is that of matrices composed of

AB
(0 C), (3.69)

where A, B,C are m x m, m X n and n X n matrices, respectively. An arbitrary scaling

upper triangular blocks

of the off-diagonal block B is an outer automorphism. In both of these examples, the
coefficients of e; in the expansion of X! or ¥ do not participate in interactions in the BLG
model, unless e’ is inert to the outer derivation. Hence the appearance of outer derivation
in these cases is irrelevant to physics. A nontrivial example is found when ¢ is an infinite
dimensional Lie algebra. This example is studied in section 5.

3.5 Summary of the 3-algebra solutions

To summarize the result of our construction of a new 3-algebra, the general solution of the
fundamental identity for our ansatz

(g, up, ue] = Kipoei + Lapeav?, (3.70)
[, up, '] = Ja%e] RO (3.71)
[ug, €', el] = vb + fiikey, (3.72)
e, e, ek = —fi*?, (3.73)
is given by (3.57), (3.60) and (3.62), which are repeated here for the convenience of
the reader,
igk __ éjk i7j7k € Iaa (3 74)
@0 otherwise, '
JC% = Dyy(e?) for a derivation Dy, (3.75)
Kabc = Kébcei = [Daca Dbc] + [Dbaa Dca] + [cha Dab] + Cabc, (376)

where Cy. are central elements in g satisfying (3.66) and (3.68)

Clh.=0 unless 1el,Ul,Ul,, (3.77)
Dab(cacd) + Dac(cadb) + Dad(cabc) =0. (378)

The nontrivial part of the metric is given by

(e ef) =97, (ug,0") =6y, (3.79)
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where g% is the Killing form of the Lie algebra ¢g. Although we have assumed that ¢% is
positive definite in the derivation above, it is obvious that the 3-algebra can be directly
generalized to a generic Killing form which is not necessarily positive definite.

Compared with the 3-algebra discovered in [14, 16, 24], the 3-algebra constructed above
contains more information. While e'’s are generators of a Lie algebra ¢ = g1 + -+ + gn,
Jap’s correspond to infinitesimal outer automorphisms (outer derivations), and K. encodes
both the commutation relations among J;;’s and choices of central elements in g.

Based on this analysis, we will analyze the BLG model for some examples of Lorentzian
3-algebras:

1. M =2, Ji{; = e JY (i,j = 1,...,n), others= 0 (section 4.1): This is the simplest
finite dimensional example where some character of the Lorentzian symmetry is dis-
played. Namely the BLG model defines the N’ = 8 supersymmetric vector multiplets.

2. M =2, J(% = e JY, flij k # 0, others= 0 (section 4.3): This is the simplest nontrivial
example which contains the interaction. We will present our result by studying the
Yang-Mills system (2.17) where the gauge symmetry is defined by Lorentzian Lie
algebra. This is possible since the 3-algebra can be written in the form (4.38). In
such case, one can skip the discussion of eliminating one pair of ghost fields. It also
illuminate the structure of the Yang-Mills system with Lorentzian Lie algebra.

3. Lie 3-algebra associated with affine Kac-Moody Lie algebra (section 5.1): This is the
special case of above example where the Lorentzian Lie algebra is given by the affine
Lie algebra. It illuminates how Kaluza-Klein mass is generated by the ghost fields.

4. Lie 3-algebra associated with general loop algebras (section 5.2): By this general-
ization we describe the compactification on general torus T? with constant B field
flux on it.

5. Lorentzian 3-algebra with Fkl £ 0 (section 5.3): We give a brief explanation how
construction of M5-brane [8, 9, 16] can be related to the Lorentzian 3-algebra (3.27),
(3.31)—(3.33) and how the analysis in [8, 9, 16] can be related to the analysis in
this paper.

4 BLG model for Lorentzian 3-algebra with ng, #0

In this section, we describe generic features of BLG model when Jé{) # 0. We will first
start with the “minimal” choice, namely we set other structure constants to zero,

FiM = ik = Kl =0. (4.1)

abc

We note that this is the simplest example considered in [11]. For this simplest choice,
we see that BLG model gives rise to a free N/ = 8 supersymmetric massive gauge theory
after the Higgs mechanism is used to eliminate the negative-norm fields. After including
other structure constants, we have an interacting theory. The direct analysis of interacting
model from BLG model itself is somehow complicated and less illuminating, hence we will
consider its equivalent version, the super Yang-Mills theory, in the following.
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4.1 Component expansion

The BLG action is defined by (2.1)—(2.6), with the indices A, B = (€', uq,v,). For sim-
plicity, we first study the special case when the only nonvanishing part of the structure

constant of the 3-algebra is
fu“ubij = eainj, (4.2)

where a,b=1,2 and i, =1,...,n.
As usual, we expand the relevant parts of the fields as
X' = xe' + Xgua + Xgva, (4.3)
v = \I’iei + Wouq + gavaa
> JiAug = A,
]

1
Auiua = _Auuai = §Buia7 (46)

1
Apguy, = §Cu€ab- (4.7)

In terms of the modes, the covariant derivative (2.7) becomes
(D“XI)Z' = OMX{ + eainjB,u,jale + C“JinjI,
(Dp X", = XL,

(DMXI)va = a,ulé + Eab(A;LXl{ + JijBubin[)’ (4'8)

and similar expressions for V.
The Chern-Simons action (2.6) can be rewritten in terms of the component gauge

fields as
1
LCS = EHV)\(A;L&/C)\ - §JijBuia(al/B>\jb + CqukBAkb))
v 1 2
=: eV A(AL(?,,C)\ - §JijB;u‘aDz/B>\jb)- (4.9)

The gauge field AL appears only in the Chern-Simons term. It does not participate in the
dynamics but only imposes the flatness condition 9),C); = 0 as the equation of motion.

In the original BLG model, the gauge symmetry transformations are
0X4 = AP\ XE,
oW, = AP, Up,

0A" = 0,AP, —APLA S, + A PAC,. (4.10)

We introduce the components of the gauge parameters as

1 1
Auaub = 5’}/, Ama = §ﬁm, Jiinj =l . (411)
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Then the gauge symmetry transformation in terms of the modes becomes

00; = €apJijBipPa — v Jij Pj,

5B, = 0,
0, = aeqy®p — JijearBjpPa, (4.12)
SAL = B0,

0By = 0.8 + Jii BjpCl — Jij Bujyy,
6Cu = Oy, (4.13)

where ® = X!, ¥. The gauge transformations for the gauge fields A;“ C,, associated with
the parameters o,y are Abelian.
In the original BLG model, the supersymmetry transformations are

6X L = ier!w y,
1
60U, = D, XATHT e — EXéXéXg fBOP PIK
0AF, = iel L X wp foPE, (4.14)

where ABA = ACDfCDBA. So, in terms of the components, the nontrivial parts of the
supersymmetry transformation (namely, for ¥ and /IM) become

1
00; = D, X{THT e + §€aininXg]X]KF”Ke,
6, = 9, XTI e,
1
0, = (D X)0 TPTle Sty XX XETIC
§A, = el L X[V, T,
By = i€l L1 X [0y,
60, = iel, T X Wheq . (4.15)
By the definition of the BLG model, we obtain an N' = 8 SUSY system with
ghost fields.

4.2 Elimination of ghosts
Variation of the Lagrangian by fields X!, ¥ gives

’Xl =0, T"9,¥,=0. (4.16)

As already reviewed in section 2, we solve them by the assignment [16] or the introduction
of extra gauge symmetry [18, 19]:

X=X U,=0; a=1,2. (4.17)

It is clear that this choice does not break gauge symmetry nor supersymmetry, since the

transformation of these fields is closed.
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The Lagrangian is simplified considerably after inserting these VEV’s:
1 A - A
L=- > (DuX] + e JijBujarh)? + 5 Uil D, W,
7

1 i
—§(J2)Z-jA2XiIPUX]J - §Ax11ir”Jl-jx11j

1 .
_|_6ﬂ1/>\ <AL8VC>\ — §JijB;LiaDl/B)\jb>a (418)
where
ﬁ“q)i = 8ﬂ<1>l + C“Jij‘l)j, (419)
A= X PP = (N 'X2)2, (4.20)
Pryi=617— Y Arl, (4.21)
a=1,2

. 1597 Ry .

7 o= F(|A2|2)\1 — (A1 - A)X), o= (1<2), (4.22)
1

il = ﬁrueal,)\i)\g, Th? =1, (4.23)

The 7, (a = 1,2) is the dual basis of Xa, namely (ﬁa,xb) = 0up. The matrix Pry is a
projector with codimension two which satisfies PX, = 0 (a = 1,2) and P2 = P. The
potential implies that six components of X! become massive after putting VEV to X/,
while the two components in the plane spanned by Xa remain massless. Actually the latter
can be removed by redefinition of Bﬂja,?’

B;/ua = B,uia + 5B,uia (424)
0Buia = DyuBia:  Bia = (J Vijeamos X} . (4.25)

Since this redefinition takes the form of the gauge transformation for B, it does not
change the form of Chern-Simons term. The gauge symmetry associated with (3;, is fixed
by this manipulation and will not survive in the gauge fixed Lagrangian.

After this gauge transformation, the Chern-Simons Lagrangian Lcg remains the same
while the kinetic term for X becomes

= ——Z D, X", Pry(D,X7) ZB,W (J%)jxQap By, (4.26)

Qab = €aa’ €br/ (XaH Xb/)- (427)

The second term in Lx is the mass term for the gauge potential B,,i4.
To see the mass term for gauge fields more explicitly, we combine the relevant parts
from Lgog and Ly to give the action for B,

1 1
ng = —§6MV)\JUBW‘1(FV)\)]‘2 + 5 Z Buja(Jz)ijabBZba (4.28)

3 If the matrix Ji; is not invertible, one can first decompose the linear space {ei} into two parts: the
part on which J;; is trivial and the part on which J is invertible. We focus our attention on the latter part.
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where (F,))ja = (]_A?,,B)\)ja - (lA)AB,,)ja. In the second term, we used partial integration.
Since there are no derivatives of B,;1, we integrate over them, and

1 1 2 1
Lp — — <_Z Z (Fon)ke™ + §(J2)ijA2Bm'2Buj2> : (4.29)

The gauge symmetry is now reduced to Abelian transformations,
(5‘132‘ = —'yJij@j, 5Bm‘a = —Jiija’y, 5A;L = 8Ma, 5CM = Oou7- (4.30)

They are, however, mostly trivial since the gauge field €}, which appears in the covariant
derivative is required to be flat by the equation of motion.

In the end, we find that we have n massive vector fields B2, 6n massive scalars
plJ XiJ =: (X' )ZI and 8n fermion fields ¥;. The mass spectrum of this supersymmetric
system is given by

m? = eigenvalues of J2AZ2. (4.31)

We note that this mass formula is invariant under SL(2, R) transformations:

—

)\g = gabxb, gab € SL(2,R). (4.32)

This property is natural if we want to associate the system with 72 compactification of
M-theory, so that the mass spectrum corresponds to the Kaluza-Klein modes. This feature
becomes more explicit in the example considered in the next section.

The original supersymmetry remains the same (N = 8) after the Higgs mechanism,

§X'1 = ieP TV W, (4.33)
0U; = D, X! PryT*T e + AJy X PpyT7Tle, (4.34)
SA), = iel I Py X/ 0,05, (4.35)
5C, = 0. (4.36)

4.3 Inclusion of ffljk #0

By turning on ffﬂ k # 0, one may include interacting non-Abelian gauge symmetry in the
action. For simplicity, we set

kLo, iR =0, JY 40 (4.37)

In this case, we can rewrite it as

[u17TA,TB] — fABCTC7

[v, T4, TP = 0,

[TA7TBaTC] - _hCDfABDUh (438)
where A, B, ... = {ug,vy,i}, fIF = flzjk and f“?% := J¥. This algebra is similar to that

of [14-16], that is, a (u1,v1)-extension of Lie 3-algebra (2.11). A different point is that
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this Lie 3-algebra {74} = {T" us,v2} has Lorentzian generators, while that of [14-16] is a
standard (positive-definite) Lie algebra.

In this subsection, we denote generators of this algebra as {e’,u,v}, instead of
{T? ug,v2}. Then the metric (or Killing form) and structure constant is

(e',el) = 69, (u,v) =1
fijk’ fuij _ Jij’ otherwise = 0, (4.39)
where ¢ = 1,..., N. The Jacobi identity is written as
pidl plm o gkl glim 4 ghil glim _ o (4.40)
fidl glk o pakl gli o gkil gli _ o (4.41)

which are consistent with the fundamental identity for the Lie 3-algebra {Ti,u1,2,1)172}.
This is the simplest “Lorentzian extension” of Lie algebra,

[el,el] = fU el + Jv, [u,el] = JYel. (4.42)

This extension is trivial if J¥ is an inner automorphism
JU = i, ¥ (4.43)

for some parameter o*. One may then redefine the basis
el =e+alv, u=u—ae, v =u, (4.44)

such that the algebra becomes the direct sum of the original Lie algebra and Lorentzian

pairs:

[, €] = fid, e, other commutators = 0; (4.45)

(e, ey =64, (W0 =1, other inner products = 0. (4.46)

In the following, we will focus on the nontrivial case where J gives an infinitesimal outer
automorphism.

As we explained in section 2, (according to [16],) BLG model with Lorentzian Lie
3-algebra results in super Yang-Mills theory with Lie algebra. So, let us consider the Yang-
Mills theory coupled with scalar fields X! (I = 1,...n) and spinor fields ¥ based on this
extended algebra:

1 M
L = _§<Dll«XIaDMXI> + Zl<[XI?XJ]a [XI,XJD
Z’ — Z)\l — I 1 v
+§(\II,F“DM\II> + 7(\11,F1[X ,U) — 4—)\2(FWF“ ) (4.47)
1
=: Lx + Lpot + Lw + Lint + L, (4.48)
where X! takes the adjoint representation
X = Xlet + XIu+ X1, (4.49)
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(D X" = 0, X1 — p1R A XE — JC.XT + T A, X,
= (DuX")i + J71 A, X1
(DuXI)u = (%Xi,
(D X")y = 0, X0+ J9 A X]
Ay =:Cy, Ay =By

and similar expressions for W. The covariant derivative corresponding to the gauge sym-

metry generated by e’ should thus be defined as
D, =0, — C,Dy — Ayie’,
where D,, is the derivation defined by J:

Dy(e') = J9el.

(4.54)

(4.55)

On the right hand side of (4.54), ¢’ is used to imply the adjoint action of e’, namely

e'(x) = [¢’, 2]. The gauge transformation is written as

0b; = fIk.e;®) + JVydy — Jie;®,,
od, = 0,
6"4#@' = 5;&' + fjkiEjAuk + Jki’yAuk - inEjCﬂ
=: (ﬁue)j + in’yAMj
for & = X1 0.
The kinetic term for X! becomes

o ) )
Lx = 5(DuX] + 7 4, X0)? + 0" X[(0,X] = TV A, X]).

The variation of X/ gives 92X! = 0. So we take it as constant as before,

X = N\oop1 .
After imposing this VEV,
Ly =1 i(f) xI')? - 1 g2
X = ) [ 2)\% pu?
=2
where
Fuu = [Dy, Dy,

Dy = M(\Dy + X} eb).

(4.56)

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)
(4.63)

We are thus led to interpret D,, (or J) as the derivative of a certain noncommutative space

in the direction of X,,. The situation here is reminiscent of the result of quotient conditions

in the context of Matrix Models in dealing with orbifolds and orientifolds [25]. In analogy,

since we have taken the VEV of X,, to be in the direction of X!, X Jl plays the role of a gauge
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potential and J;; that of a covariant derivative on a noncommutative space, and thus D,

mimics a covariant derivative. We will see in the next section that for the compactification

on a circle, D, is indeed the covariant derivative in the compactified direction.
If we fix the gauge by X} = 0, the second term in (4.61) becomes

A3 o
— E(J )ijAW'AW .
This is the mass term for vector bosons.
The potential term is
Lyo = Zn: X! xp L Zn:([) X7
pot 4 e ) 2 — U .

If we gauge away X! using the gauge symmetry, the last term above is simply

WS o s
S

(4.64)

(4.65)

(4.66)

It gives the mass term for X" with exactly the same mass as eq. (4.31) with A = A A4

The kinetic term for the gauge field becomes

1

1
3P ) = = i (B4 Fan™),
1 1

where

Fuvi = 0uAvi = 0y Api — 1751 AL Aui + J7 (CuAj, — CuAjy),
F,uuu = a,ucu - &JC;U
EFuy = 0,B, — 0,8, — J7 A A, .
Variation of gauge field B, gives a free equation of motion for C,
040,C, =0.
If we start from the BLG action (4.18), we have slightly different Lagrangian,

/
Lyc = EMV}\Aﬂal/C>0

(4.67)

(4.68)
(4.69)
(4.70)

(4.71)

(4.72)

where A;L is an auxiliary field. From the viewpoint of the SYM, although it is not present

from the beginning, one can add this term as a way to gauge the global symmetry of

translation of C),, analogous to (2.18), where we gauged the translation of X,, and ¥,. By

variation of AL, C}, becomes topological and pure gauge. Hence we should set C, to be

a constant. It can be interpreted as the projection of the “u”-direction on the D-brane

worldvolume, while X£ is the projection of the u-direction in the transverse directions.

4 If J is an inner automorphism, i.e. J* = fjkiuj, one may shift X} = —p; to absorb J in X', This is

consistent with our comment above that J can be redefined away if it corresponds to an inner automorphism.
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On the fermionic parts, after setting the VEV to ¥,, = 0, they become
Ly = %(\If,r“f)uxm, (4.73)

and

n . .
A — ’ 1 = ~
Ling =Y %(mi,rp (XT W) + S U DL, (4.74)
1'=2
In the gauge Xi1 = 0, the second term becomes the mass term for the fermions with their
masses given by the matrix A\jAoJ.

To summarize, in the gauge X' =0,

L =Lx+ Ly + Lint + La, (4.75)
S 1 - 1'\2 A%)‘% '/ 72 I’
I',J'=2
. Mg - .
Ly =) 5 VD, — 2@, (T T, (4.77)
I'=2
n )\2 I/ ! Z)\l = I/
L = Y FIXT X7+ 220, Dp (X", W), (4.78)
I',J'=2
_ 1 2 A% 2 A/ AI
La= =gl =5 (Pl (4.79)

which is of the form of a massive super Yang-Mills theory with the mass matrix A A2J;;.

5 Application to toroidal compactification of M/string theories

In this section we first consider an example of the general theory studied in section 4.3. We
consider the Kac-Moody algebra as an example of the Lorentzian extension of a Lie algebra,
and show in section 5.1 that the SYM theory with the gauge symmetry generated by the
Kac-Moody algebra is equivalent to a SYM theory with a finite dimensional gauge group
on a base space of higher dimensions. Finally, to be complete, in section 5.2 we consider
the BLG model with the full 3-algebraic structure to describe M2-branes in flat spacetime
compactified on a d-dimensional (noncommutative) torus with background fields.

5.1 Dp to D(p+ 1) via Kac-Moody algebra

Before we go to the general discussion, let us briefly consider a simple case where Lie 3-
algebra is defined as (2.11) where Lie algebra G itself is a Lorentzian Lie algebra. The
simplest example is when G is the affine Lie algebra g,

[u, T3] = mTy, (5.1)
[T,E}L,Tf;} = g™ Sy + i fCTE L, (5.2)
[v,u] = [v,T5] =0, (5.3)
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where a,b,¢ = 1,...,dim(g), n,m € Z and g® is the Killing form of a compact Lie algebra

g. This algebra has an invariant metric
(T2, T = g6 pim, (u,v) =1. (5.4)

We note that the generator v is the center of Kac-Moody algebra and usually taken as a
quantized c-number. Here we identify it as a nontrivial generator. On the other hand,
the generator u gives the level (or —Lg in the Virasoro algebra). While T/ has a positive-
definite metric, the generators u, v have a negative-norm generator.”

We follow the method in section 4.3 where we use the super Yang-Mills system on D2
with gauge symmetry g by using the Higgs mechanism for one Lorentzian pair.

In fact, the following analysis can be carried out for any Dp-brane system and provides
a general mechanism of the gauge theory with affine gauge symmetry. What we are going
to show is that the Dp-brane system whose gauge symmetry is § can be identified with
D(p + 1)-brane system with Lie algebra g.

If we start from the BLG model directly, we have a different perspective in which we
will treat more general argument given in the next subsection.

We start from the action

1 1 A2
_4_)\2<FMV’FMV> o §<DMXI,D“XI> + Z([XI,XJ], [XI,XJD

_ I\ =
+%\IJF“DM\IJ + %xprf[Xf, ], (5.5)

L:

where X' (x) (I =1,...,D) are the scalar field and ¥(z) is the spinor field. Both are in
the adjoint representation of g. The world volume index is given as u,v = 0,...,p. The
covariant derivative and the field strength are defined (only in this subsection) as

Dy = 8,8 —i[A,, D], F,, = 0,4, —0,A, —i[A,, A (5.6)

for ® = X!, W. The convention here differs from that in section 2; here A, is Hermitian.

We consider the following component expansion,

AN = AM(%”)TT(LI + B,v+ C“u, (5.7)
X' = X[, T8 + Xoju+ XJv, (5.8)
V=T, T8+ Tu+ Tyo. (5.9)

Various components of the covariant derivative and the field strength are given as
(D;LXI)(an) = a,uXc{n + fbca Z Aﬂ(bym)X(IC,n*m) o nC“X(ICL,”)
m

—i—inAﬂ(a,n)Xi
=: (ﬁ,uXI)(a,n) + inAu(a,n)Xqi’ (510)
(D, X", = 9, XL, (5.11)

"We note that a different type of Lie 3-algebra based on Kac-Moody symmetry was obtained in [28].
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(DHXI)U = aﬂXi + ZimgabAu(a,m)X(Ib,—m)? (512)

(F,ul/)(a,n) = a,uAu(a,n) - a1114;;((1,71) + fbca Z Au(b,m) Au(c,n—m)’ (513)
(FMV)U = 8MCV - 8VCM7 (514)
(Fuw)o = 0uBy = 0B+ Y img™ Ay am) Auip,—m) (5.15)

and similar expressions for D, ¥. From the kinetic part for v, v components, the equations
of motion for X,,, ¥,, and C}, are free,

Mo, Xl =1r0,9, = 0"0,C, — 9,C,) = 0. (5.16)
We fix their values as
X! = const. = XNo'P, w,=0, 9,0,-0,0,=0. (5.17)

For the first two relations, we need to use the method [18, 19] as reviewed in section 2. We
need to introduce the extra gauge symmetry as commented in the paragraph after (4.71)
to derive the last one. For general world volume dimensions, the additional action is

1
Sadditional = _mDﬂl/(a/J,Cl/ - &JC;L) ) (518)

where D, is a new field. It gives rise to a new gauge symmetry,
0D, = 0,5, —0,2,, 6B,=-E, (5.19)

by which we can gauge fix B, = 0. The equation of motion by the variation of D, gives
the flatness condition of C,,.

Since the gauge field C), is essentially flat, we can ignore it for simplicity (namely set
C,, = 0). After this, the ghost fields C\,, B,,, XI XI'w,, ¥, disappear from the action, and
the system is unitary.

We identify the infinite components of the scalar, spinor and gauge fields as fields in
p + 2 dimensions,

Xiey) = D Xam@e™™H, Wae,y) = 3 W @)e™",

A,ua(x> y) = Z Au(a,n) (x)e—iny/R, (5'20)

where an extra coordinate y is introduced to parametrize S' with the radius R. We also
rename

- 1 -
X2 (@, y) = Aya(w,y). (5.21)

The kinetic term of the scalar field X! can be rewritten as
1 / dy =
2 21 R

~ A ~ 1 =~
Z(aﬂXé - fb aAMchI)Q + ﬁFiya ’ (522)
I=1
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where
Flya = 0uAya — 0y Aua + P A0 A . (5.23)
Here the second term can be produced properly if we identify
R=1/A\. (5.24)

This relation seems strange if we compare with (2.20). It can be fixed by applying the
T-duality transformation [29].

The second term in (5.22), when combined with the kinetic term for gauge fields,
properly reproduces the kinetic term for p + 2 dimensional world volume. The Kaluza-
Klein mass from the compactification radius (5.24) is nA)N which is consistent with the
result (4.31).

Similarly, we can rewrite the commutator term,

A2 2 A2y
—E:XIXJ XIX :_2:/_ v1 vJ X—IXJ
I,J=1 I,J=1
D—1
1 dy -
-5 /m(DyXf)Q. (5.25)
I=1

Here again the second term can be combined with the kinetic term for X! to give the
kinetic energy on p + 2 dimensional world volume.
Finally, we can rewrite the interaction term,

. D .

I\ - z)\ ~ 7 dy

i — A R BN T2 a)

5 g \I’FI[X g / \IIFI ,\I’] + /2 \IIF D, v, (5.26)

I=1

Here, this time, the second term can be combined with the kinetic term for ¥.6 In the
end, the Lagrangian thus obtained is the same as the original Lagrangian (5.5) except that
we change the dimension parameter D — D — 1 and p — p + 1 and the gauge symmetry
G=9—y

L =LA+ Lx + Ly + Lyot + Ling, (5.27)
Ly = 4;2/ dR(F2 +2F2), (5.28)
Ly == / 27TR (D X2 + (Dy)?f)2], (5.29)
Ly = %/2 R\I/(F“D +TYD,)T, (5.30)

5We should notice the definition of I'y and I't here. We see from the kinetic term of ¥ in the
Lagrangian (5.5) that I', satisfies {I',,I',} = diag.(+ — ---—). On the other hand, I'r should satisfy
{I'1,I'y} = 675 as usual. So we choose I'® = —iI'"Y and obtain (5.26).

,25,



Lo = 50 0 [ ol g, %), 167, X)) (531)
po 4 MR ) ) 9 9
I,J=1
.\ D—1
i\ dy = 7 =
Ly = 2 WG, 1X!, 0. 5.32
=5 L [ g (532

5.2 M2 to Dp via 3-algebra

Here we consider essentially the same physical system as the previous subsection, namely
the compactification of D2-branes on torus, but we start from the BLG model for multiple
M2-branes corresponding to an example of the Lie 3-algebra summarized in (3.70)—(3.79).
The formulation here will be more general than above as we will turn on noncommutativity
and a gauge field background.

We start by defining a Lie algebra gg with generators 7T’ 1%, structure constants

Jot fwk(sl+m+n (5.33)
and metric
GG — gi% 5ga+ﬁ. (5.34)

Here m is a d-dimensional vector of integers.
The simplest example of gg has

Th =Te™?, (5.35)

m

where T is the generator for U(IN) and & is the coordinate on a d-dimensional torus. More
generally, one can consider a twisted bundle on a noncommutative torus Ted. In this case

=Tz 2 (5.36)

where T* denotes a generator of the U(N) gauge group, and Z; are noncommutative alge-

braic elements satisfying
Z:7; = % 7,7, (5.37)

The parameter 6’ is in general not the same as the noncommutative parameter 6 of the
noncommutative torus Tg, and it depends on the rank of the gauge group and its twisting.
Z; maps a section of the twisted bundle to another section. For the trivial bundle, Z; = '
and (5.36) reduces to (5.35). The case of d = 2 was studied in [26, 27]. It is straightforward
to generalize it to arbitrary dimensions.

Since the structure constant (5.33) of go has the property

FODGTRIER) o gl (5.38)
go has derivations
Jéim)(jﬁ) = 1, 6T (5.39)
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Now we consider the 3-algebra with the underlying Lie algebra g = go and I,.o’s
empty. We take J,;, = 0 if a,b # 0, and Jy, given by (5.39). It follows that the first 3

terms in (3.62) vanish, hence

KT = 6067 Cae, (5.40)

abc

assuming that T is the identity of U(N), so that T(0) is the identity of gg. In the following
we choose

Oab = 6308 Can, (5.41)
mo— ), otherwise. (5.42)

It will be shown below that the constants C,, corresponds to a nontrivial gauge field
background.
The 3-algebra is defined by the 3-brackets

[0, ta; up] = CapTg + Loanev’, (5.43)
[uo,ua, ] = maTZ 505~Cabv (5.44)
[ug, T, ] = mag”59n+nv + f”ZT,’an, (5.45)
7}, T%’Tff] = I (5.46)

where a,b,c =0,1,2,...,dand 4,5,k =1,2,..., N. (Note that we have changed the range
of indices a, b, ¢ from the convention used above.)

This 3-algebra is actually precisely the Lorentzian algebra discovered in [14, 16, 24|
constructed from the (multiple) loop algebra defined by

[uaa ub] abT* + LOabcv (547)
[tg 7%] maTZ KOabU (5.48)
[ L %] = magzjégﬁnv +f Ak m+n, (5.49)
[0, T3] = (5.50)

where (a,b=1,...,d). In the sense that one can construct the 3-algebra (5.43)—(5.46) from
a Lie algebra by adjoining two elements (ug,v”), this 3-algebra is not a good representative
of the new class of 3-algebras defined in (3.70)—(3.79). However, it is still a good example
because it demonstrates the roles played by the new parameters J,;, and K., which encode
the information about derivatives of the Lie algebra g, which is a subalgebra of the loop
algebra (5.47)—(5.50).

It follows from the result of [16] that the BLG model with the Lie 3-algebra (5.43)—
(5.46) is exactly equivalent to the SYM theory defined with the Lie algebra (5.47)—(5.50).
In section 5.1, we showed explicitly that for d = 1 the resulting SYM theory is the low
energy theory for D3-branes. Now we briefly sketch the derivation for generic d to obtain
the SYM theory for D(d + 2)-branes.
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Expanding the fields in the BLG model, we have

d
X' =" Xlua + X'(2) + V] va, (5.51)
a=0
d
U = Z Wty + U(Z) 4 40,4, (5.52)
a=0
1 d d d
Au=3 > Apavtia Ay + Y ua A Aua(Z) + > 0" NAL(Z)
a,b:O a=0 a=0
1 1 o
+5 D At A" oY Ay T A T (5.53)
a,b=0 ij

where we have used (5.36) and the notation

XNz) = Xl Tizm .. zm, (5.54)

U(Z) = i@(m)w‘zml ez (5.55)
Aua(2) = iAW(m)TiZml AL (5.56)
A (Z) = iA;a(im)Tizml . Zm, (5.57)

and X/(Z), W:(Z) Auu(Z) and ALG(Z) are sections of a twisted bundle on T§.
As we have done it many times already, we fix the coefficients of u, as

X! = constant, v, =0, Auap =0, (a,b=0,1,...,d,) (5.58)

and the coefficients of v, can be ignored. Here A, is chosen to be zero for simplicity. If
Apap’s are nonzero, it corresponds to turning on a constant background field strength with
nonvanishing components of F),;.

To proceed, we first define covariant derivatives D, on the noncommutative torus, such
that

[Da, Z™ - Z7] = ma 2™ - 207, (5.59)
[Da, D] = Cap, (5.60)

where Cyp is the constant background field strength that determines the twisting of the
bundle on Téi.

The rest of the derivation is essentially the same as section 5.1. Finally, after integrating
out the field A, the BL Lagrangian turns into that of a SYM theory

9 :
L=—= )" (Fap, F*P) + %(\T/,PADA\I/>, (5.61)

A,B=0

g -
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where

F,, = [D,, D,), (5.62)

Fur := [D,, Dyl (5.63)

Fry == [Dr,D;] + Cr1y, (5.64)
and

Dy = 08, — Auw(2), (5.65)

D! .= xIp, - X1(2), (5.66)

cl .= xXIx/cy,. (5.67)

Roughly speaking, only d of the D!’s are covariant derivatives and the rest 7 — d are scalar
fields. To turn on the background field C),;, we can assign nonzero values to 4,0, and A,,qp.

5.3 M2 to M5 revisited

As we discussed in section 3.2, there is an interesting Lorentzian 3-algebra associated with
the Nambu-Poisson bracket on 7% defined through the structure constants (3.27), (3.31)-
(3.33). We claim that the BLG model associated with this 3-algebra is exactly the descrip-
tion of M5-brane in [8, 9, 16] while it was not explicitly understood. We would like to give
a brief sketch on this point.

The key observation to define 6-dimensional fields on M5 from BLG model is to use
the “mode expansion” such as

X{ (2)T" — X[ (@)x'(y) = X' (x,y). (5.68)

If we add three pairs of Lorentzian generators (u®,v®), we have to redefine the above

expansion as
X' (z) = X (2)x'(y) + Xg (2)u + X ()0 (5.69)

Here, the fields X!(z) and XZ(z)v® are ghost fields. As we have seen reapeatedly, one
may put

XIx)=0, XI=const. (5.70)
By change of basis in the transverse direction R®, one may put

X(z,y) = X7 (2)x" () + Aau® (a=1,2,3),

X (a,y) = X! (2)x' () (I=4,...,8). (5.71)
where A\, are constant numbers. This is exactly the assignment by which we can reproduce
the Mb-brane action from BLG model (for example, eq. (30) in [8]). Various kinetic terms

on M5 world volume such as (9, X%)? (i = 4,...,8) are generated from the extra term in

X, All the other analysis in [8, 9] remain the same and we have the same conclusion.
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We note that if we do not include these extra terms, the BLG model associated with
this 3-algebra would contain infinite number of massless mode even when we consider the
compactification on 7. On the other hand, if we use the M5 action in [8, 9] on T3, we
can produce the Kaluza-Klein mass correctly since we have the kinetic term as mentioned.
Therefore, the generation of Kaluza-Klein mass on M5 can be again reduced to the inclusion
of pairs of Lorentzian norm generators in the Nambu-Poisson 3-algebra.

6 Conclusion and discussion

In this paper, we considered some generalizations of the Lorentzian Lie 3-algebras and
studied the BLG models based on the symmetry. In the examples we studied, we naturally
obtain the string/M theory compactifiction on the torus. The mass term generated by the
Higgs fields can be identified with the Kaluza-Klein mass in the toroidal compactification.
The dimension of the torus can be identified with the number of negative-norm generators
of the 3-algebra. We also argued that one may use our technique to consider the D-brane
system where its gauge symmetry is described by infinite dimensional loop algebras.

We do not believe that our examples exhaust all possible 3-algebras which are relevant
to M/string theories. For example, we did not fully examine the infinite dimensional
case with F* - 0. Another interesting possibility is the description of more general
background, such as orbifolds, through different choices of Lorentzian Lie (3-)algebras.
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